We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Technique Improves Detection of Cancer DNA in Blood

By LabMedica International staff writers
Posted on 21 Mar 2022

In a patient with cancer, tumor cells shed bits of their DNA into the blood — fragments with telltale mutations indicating they came from the diseased tissue. More...

But any tumor DNA in a blood sample is a tiny fraction floating in a sea of healthy genetic material. Accurately detecting this sparse amount of DNA is a challenge, especially when hunting for the small number of tumor cells left behind after cancer treatment (called “minimal residual disease,” or MRD). Researchers have now developed a new method to identify thousands of DNA mutations accurately and efficiently in a patient's blood sample with minimal sequencing.

The approach, called MAESTRO, developed by a team of researchers at Broad Institute (Cambridge, MA, USA), could one day enable the detection of residual cancer in patients who have undergone treatment, alerting doctors to disease recurrence earlier and more cheaply than current techniques allow. The team has previously demonstrated success in detecting small amounts of residual cancer DNA from blood samples by scanning for hundreds of cancer mutations. Scanning for thousands of mutations can improve MRD detection rates even more, but this typically requires an enormous amount of sequencing to deliver accurate results. MAESTRO, which stands for “minor allele enriched sequencing through recognition oligonucleotides,” is a more efficient approach to detect low-frequency mutations.

To use MAESTRO, researchers first sequence a patient’s tumor biopsy to understand the landscape of mutations. With this information in hand, they can create specialized molecular probes that will bind to only those tumor-associated sequences of DNA. Scientists add the molecular probes to the cell-free DNA from blood samples, then wash away any unbound DNA, enabling the sequencing machines to pick out the rare cancer mutations from the sample. In this study, MAESTRO performed just as well as more conventional sequencing approaches at detecting hundreds of low-abundance mutations, uncovering the majority while requiring significantly fewer resources. Additionally, MAESTRO enabled the team to increase the search to 10,000 mutations at low cost, profoundly boosting the detection results.

The researchers also reexamined patient samples that had been analyzed using their earlier methods. With MAESTRO, they uncovered substantially more mutations from each tested blood sample, enhancing the detection of MRD after cancer treatment. Going forward, the team is continuing to build a suite of technologies that can reduce the cost and increase the sensitivity of cancer detection, so that patients who may need additional treatment to prevent recurrence can be identified sooner.

“The ability to find rare mutations in a clinical sample is useful in many areas of biomedicine and diagnostics,” explained co-senior author Viktor Adalsteinsson, associate director of the Gerstner Center for Cancer Diagnostics at the Broad Institute. “Current techniques require a great deal of sequencing to find low-abundance DNA fragments, whereas MAESTRO is sensitive enough to find thousands of mutations with a hundred times less sequencing.”

“MAESTRO combines the advantages of depth and breadth in a single protocol,” added Michael Makrigiorgos, professor at DFCI and HMS, and additional co-senior author. “This opens up the possibility of detecting MRD earlier, or identifying circulating DNA from cancers that shed very little.”

Related Links:
Broad Institute 


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Pan-Cancer Panel
TruSight Oncology 500
New
PSA Assay
CanAg PSA EIA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.