We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Next-Generation Sequencing Impacts All Aspects of Myelodysplastic Syndrome Care

By LabMedica International staff writers
Posted on 25 Nov 2021
Print article
Image: Bone marrow smear from a person with myelodysplastic syndrome showing aberrant morphology and maturation (dysmyelopoiesis), resulting in ineffective blood cell production (Photo courtesy of Melbourne Blood Specialists)
Image: Bone marrow smear from a person with myelodysplastic syndrome showing aberrant morphology and maturation (dysmyelopoiesis), resulting in ineffective blood cell production (Photo courtesy of Melbourne Blood Specialists)
Myelodysplastic Syndrome (MDS) is a type of blood cancer that affects the bone marrow. It causes low levels of one or more types of blood cells in the blood. MDS is more common in people aged over 70, but it can happen at any age.

Signs and symptoms of MDS may include dizziness, fatigue, weakness, shortness of breath, bruising and bleeding, frequent infections, and headaches. Management of myelodysplastic syndromes is most often intended to slow the disease, ease symptoms and prevent complications. Common measures include blood transfusions and medications to boost blood cell production.

Hematologists at the Moffitt Cancer Center (Tampa, FL, USA) and their colleagues incorporated next-generation sequencing into standard of practice that will be required for patients with myelodysplastic syndrome and will impact all facets of care. They highlighted TP53 mutations to show the importance of personalization, particularly for subgroups that respond poorly to standard-of-care therapy. They identified TP53 mutation status and variant allele frequency as predictors of survival among patients with myelodysplastic syndrome and secondary acute myeloid leukemia. The very adverse-risk group, which represents the majority of patients, consists of those with a high variant allele frequency of 40%, complex karyotype or more than one mutation, or a mutation in the setting of TP53.

The scientists noted that clinicians can wait for results of sequencing panels for the vast majority of patients with myelodysplastic syndrome, adding that turnaround time continues to improve. Meanwhile, other factors that can provide a high pretest probability of whether a patient may have a TP53 mutation include therapy-related history, multiple abnormalities, refractory anemia excess blasts with increased ringed sideroblasts and p53 immunohistochemistry. Other mutations that potentially could be targeted include IDH1 and IDH2 mutations, which are rare in myelodysplastic syndrome, and splicing mutations.

To improve outcomes for this molecular subset of patients, scientists are investigating eprenetapopt, a first-in-class p53 reactivator. Results of a phase 2 study showed the agent in combination with azacitidine induced responses in more than 70% of patients, with complete remission rates of 40% to 50%. The phase 3 study, however, did not meet its primary endpoint of improved complete remission, as other trials of novel combinations that include the agent are ongoing and the investigators remains hopeful.

David A. Sallman, MD, a Hematologist and lead author of the study, said, “We really think going forward, particularly in the setting of novel therapy, that achievement of p53 clearance, as low as possible, potentially at that point then bridging to transplant, may be the ultimate approach.” The study was presented at the 39th Annual Chemotherapy Foundation Symposium held November 3-5, 2021 in New York, NY, USA.

Related Links:
Moffitt Cancer Center

Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Urine Test Strip
HealthMate DA-7
Automated Clinical Chemistry Analyzer
Nucleic Acid Extractor

Print article



view channel
Image: Trichinella sp. found in muscle tissue (Photo courtesy of McGill University)

Laboratory Features of Trichinellosis and Eosinophilia Threshold Determined

Trichinella nativa is a nematode worm, one of the species of the genus Trichinella, found in arctic and subarctic regions. It is highly pathogenic and has a high resistance to freezing. It is encapsulated,... Read more


view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.