We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Genome-Wide cfDNA Analysis Detects Therapy Response in B-Cell Lymphoma

By LabMedica International staff writers
Posted on 10 Nov 2021
Print article
Image: The Bio-Rad QX200 Droplet Digital PCR (ddPCR) reader (Photo courtesy of University of California Santa Barbara)
Image: The Bio-Rad QX200 Droplet Digital PCR (ddPCR) reader (Photo courtesy of University of California Santa Barbara)
Diffuse large B-cell lymphoma (DLBCL) is the most common, aggressive type of non-Hodgkin lymphoma. Although 50% to 60% of individuals achieve cure with chemoimmunotherapy, outcomes are poor for relapsed/refractory disease.

Chimeric antigen receptor (CAR) T-cell therapy represents breakthrough progress in personalized cancer therapy for patients with lymphoma. Low-coverage, genome-wide cell-free DNA measurements commonly used in noninvasive prenatal testing also appear useful in differentiating CAR T-cell therapy responders from non-responders among B-cell lymphoma patients.

Hematologists at the University of California San Diego (La Jolla, CA, USA) enrolled consecutive patients with relapsed/refractory B-cell lymphoma undergoing CAR T-cell therapy. Whole blood was collected from 12 patients undergoing CAR T-cell therapy for relapsed/refractory B-cell lymphoma. Samples were collected on standardized schedule of days. A total of 127 blood samples were processed to plasma and the buffy coat (cellular) component. For each blood sample, a plasma fraction and a buffy coat fraction were retained for subsequent testing. Scientists from Laboratory Corporation of America (Burlington, NC, USA) were part of the study group.

Cell-free DNA (cfDNA) from the plasma of each sample was extracted using a bead-based method. Libraries for genome-wide sequencing were created from cfDNA and sequencing was performed using HiSeq2500 instruments (Illumina, San Diego, CA, USA). Sequencing data were processed, and the genome instability number (GIN) was calculated. Total genomic DNA was extracted from the buffy coat using a column-based method (Qiagen, Venlo, The Netherlands). A ddPCR reaction was designed to quantify the abundance of the CAR construct and the human Ribonuclease P (RNAseP) gene using a QX200 droplet reader (Bio-Rad, Hercules, CA, USA).

The investigators reported that all five patients who remained in complete response (CR) at the time of last measurement had genomic instability number (GIN) <170 (threshold). Two patients who attained CR, but later relapsed, and all but one patient who had best response other than CR had last GIN measurement of >170. In five of six patients with relapsed or progressive disease, increasing GIN was observed prior to the diagnosis by imaging. The abundance of CAR T-cell construct (absolute number of construct copies relative to the number of human genome equivalents) also showed a trend to correlate with outcome by day 10.

Aaron M. Goodman, MD, a professor of medicine and the study's first author, said “This technology is perfect for lymphoma, explaining that cfDNA is an attractive means of monitoring lymphomas, as these cancers behave in some ways like solid tumors and feature cells that are often more sensitive to death and therefore to releasing nucleic acids into the bloodstream.”

The authors concluded that non-invasive liquid biopsy with cfDNA and copy number alterations (CNA) analysis may be correlated with response and may be utilized to monitor response in patients with relapsed B-cell lymphoma treated with CAR T-cell therapy. The study was published on October 13, 2021 in the journal Transplantation and Cellular Therapy.

Related Links:
University of California San Diego
Laboratory Corporation of America
Illumina
Qiagen
Bio-Rad


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.