We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Noninvasive Device Can ‘Read the Blood Through the Skin’ to Measure Hemoglobin in Real-Time

By LabMedica International staff writers
Posted on 02 Nov 2021
Print article
Image: From left, Alexandra Hansard, Sanjay Gokhale and George Alexandrakis (Photo courtesy of The University of Texas at Arlington)
Image: From left, Alexandra Hansard, Sanjay Gokhale and George Alexandrakis (Photo courtesy of The University of Texas at Arlington)

A team of bioengineers and scientists has developed a new noninvasive technology that may help real-time monitoring of key blood parameters, such as hemoglobin, especially in Black patients.

The wearable device developed by researchers at The University of Texas at Arlington (Arlington, TX, USA) in collaboration with Shani Biotechnologies, LLC, could reduce racial disparities in blood measurements. Most currently available methods for monitoring hemoglobin require blood samples and expensive equipment. The available noninvasive spectroscopic methods have a high degree of variability and often are inaccurate in people of color due to differences in skin melanin. There is a significant unmet need for a reliable, noninvasive device to estimate hemoglobin, irrespective of skin color.

The researchers came up with the idea of developing a wearable device, such as a watch or a monitor, “that would read the blood through the skin.” The new device relies on the spectroscopic properties of hemoglobin in the blue-green light spectra, as opposed to the red-infrared spectra currently used in similar devices. The device is easy to use, utilizing a probe that is placed on the skin and measures reflected light from the skin. The team evaluated the novel device in more than 30 participants. They compared the hemoglobin values measured by the device to those measured by currently available point-of-care devices, as well as through standard blood tests. Preliminary results suggest the device can estimate hemoglobin with better accuracy and consistency than currently available comparable methods.

“We are planning larger studies in a variety of patient populations to advance the clinical development of the device,” said Vinoop Daggubati, MD, CEO of Shani Biotechnologies. “The technology has massive potential in health care settings, remote monitoring and embodiment into wearables. We are committed to closing the racial disparity in these diagnostic modalities to provide better care for African Americans, Hispanics and people of color. Our technology is a steppingstone toward achieving that goal.”

Related Links:
The University of Texas at Arlington 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.