We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Artificial Intelligence Helps Diagnose Leukemia

By LabMedica International staff writers
Posted on 29 Sep 2021
Multi-parameter flow cytometry (MFC) is a cornerstone in clinical decision making for leukemia and lymphoma. More...
MFC data analysis requires manual gating of cell populations, which is time-consuming, subjective, and often limited to a two-dimensional space.

Typical symptoms of malignant B-cell lymphomas and related leukemias are that the lymph nodes become swollen, there is weight loss and fatigue, as well as fevers and infections. If such a cancer of the lymphatic system is suspected, the physician takes a blood or bone marrow sample and sends it to specialized laboratories for flow cytometry analysis.

Clinical Scientists and Bioinformaticians associated with University of Bonn (Bonn, Germany) and colleagues from other institutions present a workflow that allows existing artificial intelligence (AI) to adapt to multiple MFC protocols. They combined transfer learning (TL) with MFC data merging to increase the robustness of AI. The base dataset consists of around 18,000 training samples acquired using a 9-color MFC panel at Munich Leukemia Laboratory (MLL, Munich, Germany), between 2017 and 2018. Four additional MFC target datasets were obtained with different MFC panel compositions. All samples were analyzed on Navios flow cytometers (Beckman Coulter, Miami, FL, USA).

Flow cytometry is a method in which the blood cells flow past measurement sensors at high speed. The properties of the cells can be detected depending on their shape, structure or coloring. Detection and accurate characterization of pathological cells is important when making a diagnosis. The laboratories use "antibodies" that dock to the surface of the cells and are coupled to fluorescent dyes. Such markers can also be used to detect small differences between cancer cells and healthy blood cells. Flow cytometry generates large amounts of data. On average, more than 50,000 cells are measured per sample. These data are then typically analyzed on screen by plotting the expression of the markers used against each other.

The great new feature of the AI presented in the study lies in the possibility of knowledge transfer. Particularly smaller laboratories that cannot afford their own bioinformatics expertise and may also have too few samples to develop their own AI from scratch can benefit from this study. After a short training phase, during which the AI learns the specifics of the new laboratory, it can then draw on knowledge derived from many thousands of data sets.

Peter M. Krawitz, MD, PhD, a Professor at the Institute for Genomic Statistics and Bioinformatics and a senior author of the study, said, “The gold standard is diagnosis by hematologists, which can also take into account results of additional tests. The point of using AI is not to replace physicians, but to make the best use of the information contained in the data.”

The authors concluded their workflow extended deep learning models to multiple MFC panels and achieve high accuracy for multi-label classification across datasets. They addressed some of the previous challenges for automated flow cytometry classification by allowing models to be trained with smaller training sizes and generalizing models to work with multiple MFC panels. The workflow is a step toward making deep learning models robust so that AI for diagnostic MFC can move from the “proof of concept” stage into routine diagnostics. The study was published on September 17, 2021 in the journal Patterns.

Related Links:
University of Bonn
Munich Leukemia Laboratory
Beckman Coulter



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.