We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Acute Lymphoblastic Leukemia Risk Linked to Genetically Mediated Increase in Lymphocytes

By LabMedica International staff writers
Posted on 15 Sep 2021
Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. More...
As an acute leukemia, ALL progresses rapidly and is typically fatal within weeks or months if left untreated.

ALL is the most common cancer among children under 15 years old and is thought to develop under a two-hit model, under which a preleukemic clone develops in utero and a second somatic mutation then spurs the development of leukemia. While some genetic risk loci linked to ALL include variants in genes that have also been associated with hematopoiesis, lymphoid development, and blood-cell traits.

Genetic Epidemiologists at the University of Southern California (Los Angeles, CA, USA) and their colleagues investigated the etiological relevance of dysregulated blood-cell homeostasis in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. They examined blood cell traits such as lymphocyte, platelet, and neutrophil counts, as well as neutrophil-to-lymphocyte ratios and platelet-to-lymphocyte ratios.

The investigators reported that about 3,000 genetic variants were associated with one or more of these hematological traits and explained between 4% and nearly 24% of the variation in those traits. Additionally, 115 loci were linked to blood-cell ratios. They uncovered positive correlations between increased lymphocyte counts, lymphocyte-to-monocyte ratio, and neutrophil levels with ALL risk, and an inverse correlation between a higher platelet-to-lymphocyte ratio and ALL risk.

A clustering analysis identified two putative novel ALL risk variants from among those associated with blood cell traits, one on chromosome 2q22.1 and one within the FLT3 gene on 13q12.2. The scientists noted that variants within FLT3 have recently been linked to an increased risk of autoimmune thyroid disease and acute myeloid leukemia (AML). The allele linked to both ALL and AML risk lead to a truncated FLT3 protein, but an increase in FLT3 ligand levels. While this variant has a greater effect on the development of myeloid cells, they said it could also affect ALL risk through its activation of the RAS/MAPK pathway.

The authors concluded that their study showed that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL. The study was published on August 31, 2021 in the American Journal of Human Genetics.

Related Links:
University of Southern California


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Immunofluorescence image of reactive astrocytes (red) in the area surrounding sEcad-high cancer cells (blue, center) (Photo courtesy of Debeb Laboratory)

Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis

Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.