We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

SYSMEX-EUROPA

Sysmex Europe designs and produces laboratory and hematology diagnostic solutions, including instruments, reagents, c... read more Featured Products: More products

Download Mobile App




Fluorescent Lymphocytes and Smudge Cells Explored in Infectious Mononucleosis

By LabMedica International staff writers
Posted on 30 Aug 2021
Print article
Image: The Sysmex DI-60 is an automated, cell-locating image analysis system. It is connected directly to the analyzer track and therefore eliminates the need for manual intervention in the hematology workflow in the imaging cycle (Photo courtesy of Sysmex Corporation)
Image: The Sysmex DI-60 is an automated, cell-locating image analysis system. It is connected directly to the analyzer track and therefore eliminates the need for manual intervention in the hematology workflow in the imaging cycle (Photo courtesy of Sysmex Corporation)
Infectious mononucleosis (also known as Glandular fever) is an infection most commonly caused by the Epstein-Barr virus (EBV), which is a human herpes virus. Glandular fever is not particularly contagious. It is spread mainly through contact with saliva, such as through kissing, or sharing food and drink utensils.

The mono test is 71% to 90% accurate and may be used as an initial test for diagnosing infectious mononucleosis (IM). However, the test does have a 25% false-negative rate due to the fact that some people infected with EBV do not produce the heterophile antibodies that the mono test is designed to detect. Atypical lymphocytes appear, but the heterophilic agglutination test is negative.

Clinical Laboratorians at the Peking University Third Hospital (Beijing, China) enrolled in a study 62 IM patients, 67 healthy controls, 84 patients with upper respiratory tract virus infection, and 35 patients with malignant lymphoid diseases, to explore the diagnostic value of high fluorescent lymphocytes (HFLC) and smudge cells for infectious mononucleosis (IM). The complete blood counts and leukocyte differential counts were tested, and the smudge cells were manually counted.

Complete blood counts including red blood cells (RBC), hemoglobin (HGB), white blood cells (WBC), and leukocyte differential count, platelet (PLT), and HFLC percentage (HFLC%) were investigated with the Sysmex XN 9000 (Sysmex Corporation, Kobe, Japan). Manual leukocyte classification and smudge cells were counted by Sysmex DI-60. A total of 200 nucleated cells were read on each slide. The number of smudge cells seen per 100 nucleated cells was counted, and the blood smears were observed by two experienced technicians under an optical microscope.

The investigators reported that the value of HFLC% and smudge cells of the IM group were significantly higher than those of healthy controls and disease controls, and the HFLC% value of IM patients was positively correlated with the number of reactive lymphocytes. When the cutoff value of HFLC% was 0.4%, and of IM was high (AUC = 0.995). When the smudge cells >2/100 nucleated cells, the diagnostic value was further enhanced (AUC = 1.000). When the cutoff value of the HFLC% was 1.2%, it effectively distinguished IM patients from upper respiratory tract virus infection patients (AUC = 0.934). When smudge cells >16/100 nucleated cells, it also has high differential diagnosis value (AUC = 0.913). The combination HFLC% and smudge cells for the differential diagnosis can be increased to 0.968.

The authors concluded that HFLC% and smudge cells can be used as effective indicators in the early diagnosis and differential diagnosis of IM. HFLC% assists the diagnosis of IM with the following advantages: first, this indicator has high specificity and sensitivity for the diagnosis of IM, which can effectively avoid missed diagnosed; second, HFLC%, as one of the blood routine indicators, can be obtained directly from the automatic blood analyzer. The study was published on August 17, 2021 in the Journal of Clinical Laboratory Analysis.

Related Links:
Peking University Third Hospital
Sysmex Corporation


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.