We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

DIAGNOSTICA STAGO

Offers a complete system of hemostasis instrumentation and optimized reagent kits for research, as well as for routin... read more Featured Products: More products

Download Mobile App




Elevated Clotting Factor V Found with Severe COVID-19

By LabMedica International staff writers
Posted on 08 Oct 2020
Print article
Image: The ACL TOP 750 analyzer is for advanced automation and quality management in hemostasis testing (Photo courtesy of Instrumentation Laboratory).
Image: The ACL TOP 750 analyzer is for advanced automation and quality management in hemostasis testing (Photo courtesy of Instrumentation Laboratory).
Coagulopathy causes morbidity and mortality in patients with coronavirus disease 2019 (COVID‐19) due to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) infection. Most doctors now know that COVID-19 can cause blood clots, potentially leading to paralysis, stroke, heart attack and death.

Hypothesized mechanisms for thrombosis invoke inflammation, endothelial dysregulation, patient immobilization, antiphospholipid antibodies, and coagulation factor VIII dysregulation. However, direct links between the SARS‐CoV‐2 virus and coagulopathy remain unmapped. Common laboratory findings include elevations of D‐dimer and the acute phase reactants fibrinogen and factor VIII.

Medical Scientists in the coagulation laboratory at the Massachusetts General Hospital (Boston, MA, USA) and their colleagues collected patient specimens in a prospective cohort study over approximately one month at the beginning of the COVID‐19 pandemic in Massachusetts, USA (March 23, 2020 to April 27, 2020). The team studied more than 100 patients treated in the intensive care unit for COVID-19. For factors V, X, and VIII, D‐dimer, and fibrinogen they also retrospectively obtained historical values from patients with specimens submitted to our laboratory prior to the COVID‐19 pandemic.

The scientists measured Factor V, VIII, and X activities and activated partial thromboplastin time (aPTT) waveforms in the same leftover clinical specimens using validated clinical laboratory assays. Prothrombin time (PT), aPTT, heparinase aPTT (Stago, Asnieres, France), and the activities of factors II, VII, IX, XI, and XII were recorded only if determined on a specimen collected within six hours of the study specimen.

Both D‐dimer (bioMérieux, Marcy‐l'Étoile France) and fibrinogen (Stago) values were recorded at the closest time point to the study specimen and were only included if they were measured within two days of the study specimen. Factor assays were one‐stage, PT‐based for factors II, V, VII and X, and aPTT‐based for factors VIII, IX, XI, and XII, using an ACL TOP 750 analyzer, Hemosil calibrator, Synthasil or Recombiplastin, all from Instrumentation Laboratory (Bedford MA, USA), and factor‐deficient plasma from Precision Biologic (Dartmouth, NS, Canada).

The study found that patients with elevated factor V were more likely to have blood clots in the lungs, called pulmonary embolism, and deep vein thrombosis (DVT), or clots in the veins. Of patients with high levels of factor V, one-third had either DVT or a pulmonary embolism, compared with 13% of patients with lower levels. While patients with high factor V levels were at greater risk for clotting problems, patients with lower factor V levels had a higher risk of death. A decrease in factor V levels might indicate patients are progressing to a serious and often fatal condition in which clotting processes become overactive.

The authors concluded that their study revealed factor V perturbations as a previously unrecognized feature of severe COVID‐19, adds a mechanistic candidate to ongoing investigations of COVID‐19 coagulopathy with potential links to SARS‐CoV‐2 disease biology. The study was first published on August 24, 2020 in the American Journal of Hematology.

Related Links:
Massachusetts General Hospital
Stago
bioMérieux
Instrumentation Laboratory
Precision Biologic



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.