We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Device Compared to Thromboelastography for Clotting Defects

By LabMedica International staff writers
Posted on 09 Jul 2020
Print article
Image: A novel LSR-based coagulation sensor called iCoagLab has been favorably compared to thromboelastography to estimate bleeding risk (Photo courtesy of Massachusetts General Hospital).
Image: A novel LSR-based coagulation sensor called iCoagLab has been favorably compared to thromboelastography to estimate bleeding risk (Photo courtesy of Massachusetts General Hospital).
Clotting disorders occur when the body is unable to make sufficient amounts of the proteins that are needed to help the blood clot, stopping bleeding. These proteins are called clotting factors (coagulation factors). All clotting factors are made in the liver which requires vitamin K to make some of the clotting factors.

Delayed identification of coagulopathy and bleeding increases the risk of organ failure and death in hospitalized patients. Timely and accurate identification of impaired coagulation at the point-of-care can proactively identify bleeding risk and guide resuscitation, resulting in improved outcomes for patients.

Photomedicine Scientists at the Massachusetts General Hospital (Boston, MA, USA) and their medical colleagues tested the accuracy of a novel optical coagulation sensing approach, termed iCoagLab, for comprehensive whole blood coagulation profiling and investigate its diagnostic accuracy in identifying patients at elevated bleeding risk. Whole blood samples from 270 patients undergoing conventional coagulation testing were measured using the iCoagLab device. The iCoagLab test involves the use of an inexpensive laser that can illuminate a few drops of blood taken from a patient. Fluctuations made visible by the laser indicate whether the blood can properly clot.

The iCoagLab instrument was based on the principles of laser speckle rheology (LSR), a recent optical approach that measures the viscoelastic properties of soft tissues from laser speckle pattern. Recalcified and kaolin-activated blood samples were loaded in disposable cartridges and time-varying intensity fluctuation of laser speckle patterns were measured to quantify the clot viscoelastic modulus during coagulation. Coagulation parameters including the reaction time (R), clot progression time (K), clot progression rate (α), and maximum clot strength (MA) were derived from clot viscoelasticity traces and compared with mechanical thromboelastography (TEG).

In all patients, a good correlation between iCoagLab- and TEG-derived parameters was observed. Multivariate analysis showed that iCoagLab-derived parameters identified bleeding risk with sensitivity of 94%, identical to TEG, and diagnostic accuracy (89%) that was higher than TEG (87%). The diagnostic specificity of iCoagLab (77%) was significantly higher than TEG (69%).

Seemantini K. Nadkarni, PhD, an associate professor and senior author of the study, said, “Clinicians in the operating room or the ICU often walk a thin line to maintain the delicate balance between bleeding and coagulation. The iCoagLab innovation will likely advance clinical capability to rapidly identify patients with defective clotting at the point-of-care, assess risk of hemorrhage, and tailor treatments based on individual coagulation deficits to help prevent life-threatening bleeding in patients.”

The authors concluded that by rapidly and comprehensively permitting blood coagulation profiling the iCoagLab innovation is likely to advance the capability to identify patients with elevated risk for bleeding, with the ultimate goal of preventing life-threatening hemorrhage. The study was published on June 22, 2020 in the journal Thrombosis and Haemostasis.

Related Links:
Massachusetts General Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.