We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Dual Immunohistochemistry Bone Marrow Staining Detects Hairy Cell Leukemia

By LabMedica International staff writers
Posted on 03 Mar 2020
Print article
Image: PAX5/CD103 dual immunohistochemistry (IHC) staining showing no definite dual-positive cells, PAX5 stain showing brown nuclear staining in nonneoplastic B cells and CD103 showing membranous and cytoplasmic staining in a subset of T cells (Photo courtesy of US National Institute of Cancer).
Image: PAX5/CD103 dual immunohistochemistry (IHC) staining showing no definite dual-positive cells, PAX5 stain showing brown nuclear staining in nonneoplastic B cells and CD103 showing membranous and cytoplasmic staining in a subset of T cells (Photo courtesy of US National Institute of Cancer).
Hairy cell leukemia (HCL) is a B-cell lymphoproliferative disorder characterized by distinct immunophenotype (positive for CD19, CD20, PAX5, CD22, CD11c, CD25, CD103, CD123, and CD200). Immunophenotypic analysis by flow cytometry (FC) is considered the gold standard for diagnosis of HCL.

However, both FC and immunohistochemistry (IHC) can be used to determine these markers. Although both trephine bone marrow biopsy and aspirate are vital for assessment of the extent of bone marrow infiltration, in some cases a cellular aspirate cannot be obtained because of extensive fibrosis (i.e. “dry tap”).

Hematologists at the US National Institute of Cancer (Bethesda, MD, USA) and their colleagues analyzed on 148 bone marrow biopsy specimens (123 male and 25 female patients; mean age, 59.8 years; range, 25-81 years) collected from patients evaluated for HCL between 2016 and 2017. Specimens were stained within 24 hours of collection with a panel of antibodies. Specimens were subsequently washed with phosphate-buffered saline and stained for 30 minutes at room temperature with antibody combinations in eight-color cocktails.

Multiparameter flow cytometry was performed using CD19, CD20, CD22, CD11c, CD25, CD103, CD123, surface light chains, CD5, and CD23. In parallel, bone marrow IHC was done using PAX5/CD103 and PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC stains Specimens were acquired on FACSCanto II (BD Biosciences, San Jose, CA, USA). The bone marrow biopsies were fixed in B-Plus fixative and decalcified in Rapid Cal Immuno (BBC Biochemical, Vernon, WA, USA) and paraffin embedded using Tissue Tek processor (Sakura Finetek, Torrance, CA, USA).

The scientists reported that the overall sensitivity of dual IHC stains was 81.4%, positive predictive value was 100%, and negative predictive value was 81.7%. All IHC-positive cases concurred with flow cytometry data, even when HCL burden was extremely low in the flow cytometry specimens (as low as 0.02% of all lymphoid cells). PAX5/CD103 dual IHC staining generated brown nuclear staining for PAX5 and red membranous and cytoplasmic staining for CD103. PAX5/TRAP dual IHC staining showed similar results for PAX5 and red membranous and cytoplasmic staining for TRAP.

The authors concluded that dual IHC staining is a sensitive tool for detecting HCL, even in cases with minimal disease involvement. All IHC-positive cases concurred with FC data, even when HCL burden was extremely low. Only 18.3% of dual IHC–negative cases were positive for low-level involvement by FC analysis. PAX5/CD103 dual IHC staining was slightly more sensitive than PAX5/TRAP dual IHC staining. The study was published in the March 2020 issue of the American Journal of Clinical Pathology.

Related Links:
US National Institute of Cancer
BD Biosciences
BBC Biochemical
Sakura Finetek


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.