We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Immune Profiles Analyzed in Acute Myeloid Leukemia Bone Marrow

By LabMedica International staff writers
Posted on 03 Feb 2020
Print article
Image: The BD FACSVerse Flow Cytometer (Photo courtesy of BD Biosciences).
Image: The BD FACSVerse Flow Cytometer (Photo courtesy of BD Biosciences).
In acute myeloid leukemia (AML), myeloid lineage precursor cells modified by somatic mutations and transcriptomic dysregulation infiltrate the bone marrow (BM) and disrupt normal hematopoiesis.

Risk stratification of AML patients is used to predict therapy response, tailor treatment intensity, and guide clinical decision making when considering allogeneic hematopoietic stem cell transplantation (allo-HSCT). The immunologic microenvironment in various solid tumors is aberrant and correlates with clinical survival.

Hematologists at the University of Helsinki (Helsinki, Finland) compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine samples from 69 AML, 56 chronic myeloid leukemia (CML), and 52 B-cell acute lymphoblastic leukemia (B-ALL) patients at diagnosis to 12 controls with 30 immunophenotype markers using multiplex immunohistochemistry and computerized image analysis.

The team used their hematopathologic expertise to construct tissue microarrays (TMA) blocks by punching two 1 mm cores per donor located in areas of the BM biopsy characterized with high leukemic infiltrations. Control cores were punched from representative areas. They used multiplexed immunohistochemistry (mIHC), to determine quantitative compositions and phenotypic states of millions of immune cells in AML BM. The mIHC method combines 5-plex fluorescence and 3-plex chromogenic immunohistochemistry (IHC). The cells were processed for imaging and analysis. Cell samples were analyzed with FACSVerse System (BD Pharmingen, San Diego, CA, USA).

The investigators identified distinct immunologic profiles specific for leukemia subtypes and controls enabling accurate classification of AML, CML, B-ALL, and control subjects (AUC = 1.0). Interestingly, two major immunologic AML clusters differing in age, T-cell receptor clonality, and survival were discovered. A low proportion of regulatory T cells and pSTAT1+cMAF− monocytes were identified as novel biomarkers of superior event-free survival in intensively treated AML patients. They also demonstrated that AML BM and peripheral blood samples are dissimilar in terms of immune cell phenotypes.

The authors concluded that the immunologic landscape considerably varies by leukemia subtype suggesting disease-specific immunoregulation. Furthermore, the association of the AML immune microenvironment with clinical parameters suggests a rationale for including immunologic parameters to improve disease classification or even patient risk stratification. The study was published on January 22, 2020 in the journal Blood Advances.

Related Links:
University of Helsinki
BD Pharmingen


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Macrophages infected with mycobacterium tuberculosis (Photo courtesy of MIT)

New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests

Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.