We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Genetic Changes Linked to Leukemia in Down’s Syndrome Children

By LabMedica International staff writers
Posted on 24 Jul 2019
Of the 30% of children with Down's syndrome who are found to have 'myeloid preleukemia', only 10% of those will go on to develop myeloid leukemia (3% of all children with Down's syndrome). More...
Until now, it was not understood why only some children with the GATA1 mutation were progressing to full leukemia, while others were not.

The specific gene mutations required for the development of leukemia in children with Down's syndrome have been discovered. Children with Down's syndrome have a 150-fold increased risk of myeloid leukemia, and while some of the genetic causes of this have been previously established, and a new study has identified a wide range of mutations and how they functionally interact to lead to leukemia.

An international team of scientists collaborating with those at the University of Oxford (Oxford, UK) combined exome and targeted resequencing of 111 transient abnormal myelopoiesis (TAM) and 141 myeloid leukemia-Downs’s syndrome (ML-DS) samples with functional analyses. TAM requires trisomy 21 and truncating mutations in GATA1; additional TAM variants are usually not pathogenic. By contrast, in ML-DS, clonal and subclonal variants are functionally required.

The scientists identified a recurrent and oncogenic hotspot gain-of-function mutation in myeloid cytokine receptor CSF2RB. By a multiplex CRISPR/Cas9 screen in an in vivo murine TAM model, they tested loss-of-function of 22 recurrently mutated ML-DS genes. Loss of 18 different genes produced leukemias that phenotypically, genetically, and transcriptionally mirrored ML-DS.

Paresh Vyas, MRCP FRCP FRCPath, a Professor of Hematology and a study author, said, “90% of babies with Down's syndrome do not go on to develop preleukemia. But until now, we did not fully understand why some babies did develop leukemia. 'To answer this question, we carefully characterized the mutations in genes required for leukemia to develop. We found that additional genetic changes are required in the altered GATA1 blood cells, and these additional changes transform the preleukemic blood cells into leukemic blood cells.” In total, 43 different altered genes were found. The study was published on July 11, 2019, in the journal Cancer Cell.

Related Links:
University of Oxford


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Monarch Mag Cell-free DNA (cfDNA) Extraction Kit provides isolation of low-abundance cfDNA from a range of biofluids (Photo courtesy of New England Biolabs)

New Extraction Kit Enables Consistent, Scalable cfDNA Isolation from Multiple Biofluids

Circulating cell-free DNA (cfDNA) found in plasma, serum, urine, and cerebrospinal fluid is typically present at low concentrations and is often highly fragmented, making efficient recovery challenging... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: The innovative classifier can guide treatment for PDAC and other immunotherapy-resistant cancers (Photo courtesy of Adobe Stock))

Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.