We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genetic Changes Linked to Leukemia in Down’s Syndrome Children

By LabMedica International staff writers
Posted on 24 Jul 2019
Print article
Image: Bone marrow aspirate of a patient with myeloid leukemia associated with Down’s syndrome. The smear includes frequent atypical megakaryocytes. Blasts are increased (11%). As in the peripheral blood, a subset of the blasts has cytoplasmic blebs (Photo courtesy of Elizabeth L. Courville, MD).
Image: Bone marrow aspirate of a patient with myeloid leukemia associated with Down’s syndrome. The smear includes frequent atypical megakaryocytes. Blasts are increased (11%). As in the peripheral blood, a subset of the blasts has cytoplasmic blebs (Photo courtesy of Elizabeth L. Courville, MD).
Of the 30% of children with Down's syndrome who are found to have 'myeloid preleukemia', only 10% of those will go on to develop myeloid leukemia (3% of all children with Down's syndrome). Until now, it was not understood why only some children with the GATA1 mutation were progressing to full leukemia, while others were not.

The specific gene mutations required for the development of leukemia in children with Down's syndrome have been discovered. Children with Down's syndrome have a 150-fold increased risk of myeloid leukemia, and while some of the genetic causes of this have been previously established, and a new study has identified a wide range of mutations and how they functionally interact to lead to leukemia.

An international team of scientists collaborating with those at the University of Oxford (Oxford, UK) combined exome and targeted resequencing of 111 transient abnormal myelopoiesis (TAM) and 141 myeloid leukemia-Downs’s syndrome (ML-DS) samples with functional analyses. TAM requires trisomy 21 and truncating mutations in GATA1; additional TAM variants are usually not pathogenic. By contrast, in ML-DS, clonal and subclonal variants are functionally required.

The scientists identified a recurrent and oncogenic hotspot gain-of-function mutation in myeloid cytokine receptor CSF2RB. By a multiplex CRISPR/Cas9 screen in an in vivo murine TAM model, they tested loss-of-function of 22 recurrently mutated ML-DS genes. Loss of 18 different genes produced leukemias that phenotypically, genetically, and transcriptionally mirrored ML-DS.

Paresh Vyas, MRCP FRCP FRCPath, a Professor of Hematology and a study author, said, “90% of babies with Down's syndrome do not go on to develop preleukemia. But until now, we did not fully understand why some babies did develop leukemia. 'To answer this question, we carefully characterized the mutations in genes required for leukemia to develop. We found that additional genetic changes are required in the altered GATA1 blood cells, and these additional changes transform the preleukemic blood cells into leukemic blood cells.” In total, 43 different altered genes were found. The study was published on July 11, 2019, in the journal Cancer Cell.

Related Links:
University of Oxford

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Amoebiasis Test
ELI.H.A Amoeba

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.