We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Circulating Plasma DNA Potentially Identifies Incipient Tumors

By LabMedica International staff writers
Posted on 06 Mar 2019
Early cancer diagnosis might improve survival rates. More...
As circulating tumor DNA (ctDNA) carries cancer-specific modifications, it has great potential as a noninvasive biomarker for detection of incipient tumors.

A recent study describes another potential breakthrough by analyzing cell-free DNA (cfDNA) to identify imbalances in genome-wide copy number alterations (CNA) as a means of screening healthy individuals for cancers. Identifying tumors at early stages would offer the possibility of improved survival rates.

A team of Belgian and Dutch investigators led by those at the University Hospitals Leuven (Leuven, Belgium) developed a unique genomic profiling method for cfDNA called The Genomic Imbalance Profiling from cfDNA SEQuencing (GIPseq) method. The team collected cfDNA samples from 1,002 elderly Belgian patients with no prior history of cancer, and they used GIPseq to look for chromosomal aberrations that suggested the presence of a malignancy. Six-month clinical analyses took place in cases where aberrations were found, with investigators cataloguing any CNAs present in cfDNA to create a “map” of aberrations found in this aging population.

The scientists reported that in 3% of participants chromosomal imbalances were detected. Follow-up analyses, including whole-body MRI screening, confirmed the presence of five hematologic malignancies: one Hodgkin lymphoma (HL), stage II; three non-HL (type chronic lymphocytic leukemia, Rai I–Binet A; type small lymphocytic lymphoma (SLL), stage III; type mucosa-associated lymphoid tissue, stage I) and one myelodysplastic syndrome with excess blasts, stage II. The CNAs detected in cfDNA were tumor-specific. Furthermore, one case was identified with monoclonal B-cell lymphocytosis, a potential precursor of B-cell malignancy. In 24 additional individuals, CNAs were identified but no cancer diagnosis was made. For nine of them, the aberrant cfDNA profile originated from peripheral blood cells. For 15 others the origin of aberrations in cfDNA remains undetermined.

The authors concluded that their results illustrated the GIPseq’s effectiveness in detecting incipient hematologic malignancies and clonal mosaicism with unknown clinical significance in healthy patients. They demonstrated that cfDNA screening detects CNAs, which are not only derived from peripheral blood, but even more from other tissues. Since the clinical relevance of clonal mosaics in other tissues remains unknown, long-term follow-up is warranted. The study was published January 1, 2019, in the journal Annals of Oncology.

Related Links:
University Hospitals Leuven


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.