We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Peripheral Blood Flow Cytometry Classifies Pediatric Acute Leukemia

By LabMedica International staff writers
Posted on 25 Feb 2019
Historically, flow cytometry performed on the bone marrow aspirate (BMFC) has been the standard for the immunophenotypic characterization of acute leukemia. More...
Recent data have demonstrated the high sensitivity and specificity of peripheral blood flow cytometry for the diagnosis of pediatric leukemia.

Peripheral blood flow cytometry (PBFC) represents a less invasive approach to the immunophenotyping of the leukemic clone, which can also facilitate a quicker diagnosis and the opportunity to subsequently perform concurrent central venous access device placement, lumbar puncture with intrathecal chemotherapy administration, and bone marrow biopsy, if necessary, under a single anesthetic.

Medical laboratory scientists at St. Jude Children's Research Hospital (Memphis, TN, USA) collected peripheral blood and BM samples were collected in preservative‐free heparin or EDTA. Cells were washed twice in phosphate‐buffered saline and labeled with various combinations of monoclonal antibodies conjugated to fluorochromes directed against surface antigens or isotype‐matched nonreactive monoclonal antibodies. The samples were processed and analyzed using four or eight color stained cell preparations with FACSCalibur or FACSCanto II flow cytometers with FACSDiva software. A minimum of 20,000 cells per tube were counted. A diagnostic minimal residual disease (MRD) panel was also implemented.

The team identified 290 PBFC samples with concurrent BM evaluation. Based on the final immunophenotypic classification, the cases were distributed as follows: 108 B‐lymphoblastic leukemia (B‐ALL), 57 T‐lymphoblastic leukemia (T‐ALL), 116 acute myeloid leukemia (AML), and nine mixed‐phenotype acute leukemia (MPAL). Among all cases, five had a diagnostically significant discrepancy between PBFC and BM evaluation. In three cases, the immunophenotype by PBFC was consistent with early T‐cell precursor ALL (ETP‐ALL), whereas BM evaluation demonstrated MPAL. Two cases were suspicious for acute megakaryoblastic leukemia (AMKL) and MPAL, T/myeloid by PBFC, but were diagnosed as B‐ALL and T‐ALL in the BM.

The authors concluded that immunophenotypic classification by PBFC is accurate in more than 98% of all cases of pediatric leukemia with the rare exceptions of suspected ETP‐ALL, MPAL, and AMKL. These PBFC diagnoses should be confirmed with BM immunophenotyping. The study was published in the January 2019 issue of the journal Pediatric Blood & Cancer.

Related Links:
St. Jude Children's Research Hospital


Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Hematology System
Medonic M16C
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.