We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Peripheral Blood Flow Cytometry Classifies Pediatric Acute Leukemia

By LabMedica International staff writers
Posted on 25 Feb 2019
Print article
Image: The FACSCalibur flow cytometer used to immunophenotype pediatric leukemia (Photo courtesy of Becton Dickinson).
Image: The FACSCalibur flow cytometer used to immunophenotype pediatric leukemia (Photo courtesy of Becton Dickinson).
Historically, flow cytometry performed on the bone marrow aspirate (BMFC) has been the standard for the immunophenotypic characterization of acute leukemia. Recent data have demonstrated the high sensitivity and specificity of peripheral blood flow cytometry for the diagnosis of pediatric leukemia.

Peripheral blood flow cytometry (PBFC) represents a less invasive approach to the immunophenotyping of the leukemic clone, which can also facilitate a quicker diagnosis and the opportunity to subsequently perform concurrent central venous access device placement, lumbar puncture with intrathecal chemotherapy administration, and bone marrow biopsy, if necessary, under a single anesthetic.

Medical laboratory scientists at St. Jude Children's Research Hospital (Memphis, TN, USA) collected peripheral blood and BM samples were collected in preservative‐free heparin or EDTA. Cells were washed twice in phosphate‐buffered saline and labeled with various combinations of monoclonal antibodies conjugated to fluorochromes directed against surface antigens or isotype‐matched nonreactive monoclonal antibodies. The samples were processed and analyzed using four or eight color stained cell preparations with FACSCalibur or FACSCanto II flow cytometers with FACSDiva software. A minimum of 20,000 cells per tube were counted. A diagnostic minimal residual disease (MRD) panel was also implemented.

The team identified 290 PBFC samples with concurrent BM evaluation. Based on the final immunophenotypic classification, the cases were distributed as follows: 108 B‐lymphoblastic leukemia (B‐ALL), 57 T‐lymphoblastic leukemia (T‐ALL), 116 acute myeloid leukemia (AML), and nine mixed‐phenotype acute leukemia (MPAL). Among all cases, five had a diagnostically significant discrepancy between PBFC and BM evaluation. In three cases, the immunophenotype by PBFC was consistent with early T‐cell precursor ALL (ETP‐ALL), whereas BM evaluation demonstrated MPAL. Two cases were suspicious for acute megakaryoblastic leukemia (AMKL) and MPAL, T/myeloid by PBFC, but were diagnosed as B‐ALL and T‐ALL in the BM.

The authors concluded that immunophenotypic classification by PBFC is accurate in more than 98% of all cases of pediatric leukemia with the rare exceptions of suspected ETP‐ALL, MPAL, and AMKL. These PBFC diagnoses should be confirmed with BM immunophenotyping. The study was published in the January 2019 issue of the journal Pediatric Blood & Cancer.

Related Links:
St. Jude Children's Research Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.