We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Leukemia Prematurely Ages Bone Marrow Cells

By LabMedica International staff writers
Posted on 20 Feb 2019
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cells.

AML is an age-related disease that is highly dependent on the bone marrow microenvironment. More...
With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of pro-inflammatory cytokines, chemokines and growth factors, collectively known as the senescence-associated secretory phenotype (SASP).

A large team of scientists led by those at the University of East Anglia (Norwich, UK) identified the mechanism by which the process of premature aging occurs in the bone marrow of leukemia patients and highlights the potential impact this could have on future treatments. They reported that the bone marrow stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feedback to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a-positive senescent bone marrow stromal cells in vivo improved the survival of mice with leukemia.

The team next found that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. NADPH oxidase (NOX2) is an enzyme usually involved in the body’s response to infection, was shown to be present in AML cells, and this was found to be responsible for creating the aging conditions. The team established that the NOX2 enzyme generates superoxide, which drives the aging process. Finally, using the p16-3MR mouse model, they showed that by targeting NOX2, they reduced BM stromal cell senescence and consequently reduced AML proliferation. The data identifies leukemia generated NOX2 derived superoxide as a driver of pro-tumoral p16INK4a-dependent senescence in bone marrow stromal cells.

Stuart A. Rushworth, PhD, the lead author of the study, said, “Our results provide evidence that cancer causes aging. We have clearly shown that the cancer cell itself drives the aging process in the neighboring noncancer cells. Our study reveals that leukemia uses this biological phenomenon to its advantage to accelerate the disease. It was not previously known that leukemia induces aging of the local noncancer environment. We hope that this biological function can be exploited in the future, paving the way for new drugs.” The study was published on January 31, 2019, in the journal Blood.

Related Links:
University of East Anglia


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.