We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Assays Detect Inherited Blood Disorders Associated with Malaria

By LabMedica International staff writers
Posted on 07 Feb 2019
Print article
Image: The MAGPIX single or multiplex automated immunoassay reader (Photo courtesy of Bio-Rad).
Image: The MAGPIX single or multiplex automated immunoassay reader (Photo courtesy of Bio-Rad).
Plasmodium parasites have co-evolved with human hosts and exert a considerable evolutionary pressure on mutations that confer a degree of protection against malaria. Glucose-6-phosphate dehydrogenase deficiency (G6PDd), hemoglobin C (HbC) and S (HbS) are inherited blood disorders (IBD) common in populations in malaria endemic areas.

All these IBDs are associated to some degree with protection against clinical malaria whilst additionally G6PDd is associated with hemolysis following treatment with 8-aminoquinolines. Measuring the prevalence of these inherited blood disorders in affected populations can improve understanding of disease epidemiology.

Scientists at the London School of Hygiene & Tropical Medicine (London, UK) and their international colleagues collected blood samples from males aged 18–45 years in Burkina Faso from August 2014 to November 2015 and from males aged over 10 years in The Gambia from December 2015 to April 2016. All participants were screened for glucose-6-phosphate enzyme activity using CareStart G6PD rapid diagnostic test and the Fluorescent Spot Test (FST).

Human DNA from whole blood samples was amplified in a novel, multiplex PCR reaction and extended with SNP-specific probes in an allele specific primer extension (ASPE) to simultaneously detect four epidemiologically important human markers including G6PD SNPs (G202A and A376G) and common hemoglobin mutations (HbS and HbC). The products were hybridized to magnetic beads and the median fluorescence intensity (MFI) was read on MAGPIX. Genotyping data was compared to phenotypical data generated by flow cytometry and to established genotyping methods. Samples were examined on a FACScailbur cytometer.

The team reported that 75/78 samples from Burkina Faso (96.2%) and 58/61 samples from The Gambia (95.1%) had a G6PD and a HBB genotype successfully assigned by the bead-based assay. Flow cytometry data available for 61 samples further supported the concordance between % G6PD normal/deficient cells and genotype. Using the microsphere assay for the four markers, data for 96 samples was available within seven hours at an estimated cost per sample of USD 4.30.

The authors concluded that the microsphere multiplex assay may play a role in addressing the increasing need to test for human and parasite genetic changes because of their impact on disease progression and malaria epidemiology. The multiplex nature of the assay in addition to the fast turn-around time and the relatively low cost, make it attractive for assessment of multiple genetic markers in large-scale epidemiological studies. The study was published on January 21, 2019, in the Malaria Journal.

Related Links:
London School of Hygiene & Tropical Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.