We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Myeloproliferative Neoplasms Fall into Genetic Subgroups

By LabMedica International staff writers
Posted on 31 Oct 2018
Print article
Image: A blood smear from a 68-year-old woman with a 13-year history of polycythemia vera and there are three red blood cell precursors present and slight to moderate anisopoikilocytosis (Photo courtesy of The Armed Forces Institute of Pathology).
Image: A blood smear from a 68-year-old woman with a 13-year history of polycythemia vera and there are three red blood cell precursors present and slight to moderate anisopoikilocytosis (Photo courtesy of The Armed Forces Institute of Pathology).
Myeloproliferative neoplasms are a group of chronic blood cancers associated with a risk of bleeding and blood clots, but they can also progress to more advanced disease, including leukemia.

The current classification system divides these blood cancers into groups based on their clinical and laboratory features, but there is some overlap between the categories. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment.

A large team of scientists working with the Wellcome Trust Sanger Institute (Hinxton, UK) sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. They developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort.

DNA samples underwent library preparation at the Wellcome Trust Sanger Institute, Cambridge, UK. The team used 1,033 granulocyte derived DNA samples that underwent whole genome amplification prior to library preparation. Sequencing libraries were generated in a 96-well format, with each sample carrying a unique DNA barcode. Pools of 16 libraries were made and hybridized to RNA baits. Pools of 96 cases were sequenced on two lanes of a HiSeq 2500 machine using 75bp paired-end sequencing.

The team included a total of 2,035 patients in the analysis. A total of 33 genes had driver mutations in at least five patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis.

The investigators defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, they created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. At the same time, they were able to identify a subgroup that was at low risk of disease progression, which might not benefit from aggressive treatment and instead could be treated more conservatively.

Jyoti Nangalia, PhD, a consultant hematologist and co-author of the study, said, “Our new online calculator takes genetic and clinical information available for a patient and makes a prediction of the future outcome of that particular person's disease. In the future, this could be used to reassure patients who have a good predicted outcome, and identify patients who are at risk of developing severe disease who could benefit from an alternative treatment approach.” The study was published on October 11, 2018, in The New England Journal of Medicine.

Related Links:
Wellcome Trust Sanger Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.