We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New mRNA Cancer Drivers Revealed in Chronic Lymphocytic Leukemia

By LabMedica International staff writers
Posted on 11 Sep 2018
New evidence has emerged showing that the inactivation or alteration of cancer suppressor genes can take place even if DNA itself remains unaltered. More...
A known molecular mechanism for cancer development and spread is the inactivation of tumor suppressor genes, which encode various tools the body uses to keep its cells from turning cancerous.

Changes in messenger RNA (mRNA) due to a process called intronic polyadenylation (IPA) can drive development of some cancers by altering gene expression in a way that interferes with the proper functioning of tumor suppression mechanisms. Evidence is building that the hobbling of tumor suppressors can take place not just due to changes in the DNA itself, but by alterations in mRNAs, which act as a go-between, translating the DNA code into its intended function in the body.

Scientists at Memorial Sloan Kettering Cancer Center (New York, NY, USA) used an RNA sequencing method they developed to examine normal and malignant B cells from 59 chronic lymphocytic leukemia (CLL) patients. They found that the patients showed widespread tumor suppressor inactivation in mRNA even without a corresponding DNA alteration. The team reported that IPA truncated mRNAs in the CLL cohort predominantly affected genes with tumor-suppressive functions. In some cases (genes such as DICER and FOXN3) this appeared to result in the translation of truncated proteins, which lack the tumor-suppressive effect that they would have in their full-length form. In several other cases (CARD11, MGA and CHST11) the altered proteins even acted in an oncogenic manner.

Overall, the team concluded that the inactivation of tumor-suppressor genes by aberrant mRNA processing appears to be significantly more prevalent in CLL, at least based on this cohort, than functional loss of these genes via DNA mutations. The authors also reported that they saw truncated tumor-suppressor proteins not just for known tumor-suppressor genes but also in previously unrecognized or relatively understudied sequences. The study was published on August 27, 2018, in the journal Nature.

Related Links:
Memorial Sloan Kettering Cancer Center


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Candida Glabrata Test
ELIchrom Glabrata
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.