We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New mRNA Cancer Drivers Revealed in Chronic Lymphocytic Leukemia

By LabMedica International staff writers
Posted on 11 Sep 2018
Print article
Image: A blood film from a patient with Chronic Lymphocytic Leukemia (CLL); a large lymphocyte (arrow) has a notched nucleus and demonstrates the variable appearance of some of the lymphocytes in CLL (Photo courtesy of Peter Maslak).
Image: A blood film from a patient with Chronic Lymphocytic Leukemia (CLL); a large lymphocyte (arrow) has a notched nucleus and demonstrates the variable appearance of some of the lymphocytes in CLL (Photo courtesy of Peter Maslak).
New evidence has emerged showing that the inactivation or alteration of cancer suppressor genes can take place even if DNA itself remains unaltered. A known molecular mechanism for cancer development and spread is the inactivation of tumor suppressor genes, which encode various tools the body uses to keep its cells from turning cancerous.

Changes in messenger RNA (mRNA) due to a process called intronic polyadenylation (IPA) can drive development of some cancers by altering gene expression in a way that interferes with the proper functioning of tumor suppression mechanisms. Evidence is building that the hobbling of tumor suppressors can take place not just due to changes in the DNA itself, but by alterations in mRNAs, which act as a go-between, translating the DNA code into its intended function in the body.

Scientists at Memorial Sloan Kettering Cancer Center (New York, NY, USA) used an RNA sequencing method they developed to examine normal and malignant B cells from 59 chronic lymphocytic leukemia (CLL) patients. They found that the patients showed widespread tumor suppressor inactivation in mRNA even without a corresponding DNA alteration. The team reported that IPA truncated mRNAs in the CLL cohort predominantly affected genes with tumor-suppressive functions. In some cases (genes such as DICER and FOXN3) this appeared to result in the translation of truncated proteins, which lack the tumor-suppressive effect that they would have in their full-length form. In several other cases (CARD11, MGA and CHST11) the altered proteins even acted in an oncogenic manner.

Overall, the team concluded that the inactivation of tumor-suppressor genes by aberrant mRNA processing appears to be significantly more prevalent in CLL, at least based on this cohort, than functional loss of these genes via DNA mutations. The authors also reported that they saw truncated tumor-suppressor proteins not just for known tumor-suppressor genes but also in previously unrecognized or relatively understudied sequences. The study was published on August 27, 2018, in the journal Nature.

Related Links:
Memorial Sloan Kettering Cancer Center

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.