We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Multiple Myeloma Risk Genes Revealed

By LabMedica International staff writers
Posted on 23 Feb 2018
Two genes have been uncovered with apparent ties to inherited multiple myeloma risk, starting from analyses of several large American families that are frequently affected by the complex blood plasma cell cancer.

The high-risk pedigree (HRP) design is an established strategy to discover rare, highly penetrant, Mendelian-like causal variants. More...
Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models.

An international team of scientists led by those at the University of Utah School of Medicine (Salt Lake City, UT, USA) used an updated version of a gene mapping method known as shared genomic segment (SGS) to narrow in on commonly altered regions in the genomes of multiple myeloma-prone families or "high-risk pedigrees" (HRP) from Utah. By folding in exome sequence data for nearly 1,000 myeloma-free individuals and more than 1,000 individuals affected by multiple myeloma or a precursor condition known as "monoclonal gammopathy of undetermined significance " (MGUS), the team went on to uncover suspicious changes in two genes, Ubiquitin Specific Peptidase 45 (USP45) and AT-Rich Interaction Domain 1A (ARID1A), that appeared to coincide with multiple myeloma risk.

The team used OmniExpress high-density SNP arrays and sequenced individuals from 11 multiple myeloma HRPs, identified through the Utah Cancer Registry, and applied SGS to find shared regions of the genome on chromosomes 6 and 1 with potential ties to multiple myeloma. The team folded in exome sequence data for 28 individuals from the initial 11 pedigrees, along with 126 exomes from a broader set of 44 multiple myeloma pedigrees from the USA, Canada, and France, to identify rare, potentially deleterious mutations in two genes falling the regions of interest: USP45 and ARID1A.

In an even wider exome sequence collection that encompassed 186 early onset multiple myeloma or familial MGUS cases, 733 cases of sporadic multiple myeloma profiled previously, and 964 unaffected controls, the investigators uncovered additional mutations affecting these genes or other genes falling in the same DNA repair or chromatin remodeling complex pathways as USP45 and ARID1A.

The team noted that “Our myeloma findings demonstrate our high-risk pedigree method can identify genetic regions of interest in large, high-risk pedigrees that are also relevant to smaller nuclear families and overall disease risk. We have developed a strategy for gene mapping in complex traits that accounts for heterogeneity within HRPs and formally corrects for multiple testing to allow for statistically rigorous discovery.” The study was published on February 1, 2018, in the journal Public Library of Science Genetics.

Related Links:
University of Utah School of Medicine


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.