We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multiple Myeloma Survival Associated with Enzyme Levels

By LabMedica International staff writers
Posted on 21 Dec 2017
Print article
Image: Bone marrow biopsy of a patient with multiple myeloma, showing diffuse infiltration by neoplastic plasma cells, which can be recognized by the eccentric nucleus and perinuclear halo (Photo courtesy of Dr. Michael G. Bayerl).
Image: Bone marrow biopsy of a patient with multiple myeloma, showing diffuse infiltration by neoplastic plasma cells, which can be recognized by the eccentric nucleus and perinuclear halo (Photo courtesy of Dr. Michael G. Bayerl).
Multiple myeloma (MM) is the second most common blood cancer in the USA and 30% to 50% of multiple myeloma patients have extra copies of the gene that encodes the enzyme Adenosine Deaminase, RNA Specific (ADAR1).

ADAR1 is normally expressed during fetal development to help blood cells form. ADAR1 edits the sequence of RNA, a type of genetic material related to DNA. By swapping out just one RNA building block for another, ADAR1 alters the carefully orchestrated system cells use to control which genes are turned on or off at which times.

Scientists at the University of California San Diego School of Medicine (La Jolla, CA, USA) obtained bone marrow samples from MM patient and normal age-matched controls. Peripheral blood (PB) or bone marrow (BM) samples were processed by Ficoll density centrifugation and viable total mononuclear cells (MNC) were collected for further analyses and stored in liquid nitrogen. RNA editing site-specific quantitative real time polymerase chain reaction (RESSq-PCR) assay primer design was carried out for specific cancer and stem cell-associated loci. The team performed several other molecular procedures to confirm their results.

The scientists analyzed a database of nearly 800 multiple myeloma patient samples, and they discovered that 162 patients with low ADAR1 levels in their tumor cells survived significantly longer over a three-year period compared to 159 patients with high ADAR1 levels. While more than 90% of patients with low ADAR1 levels survived longer than two years after their initial diagnosis, fewer than 70% of patients with high ADAR1 levels were alive after the same period of time.

The team found that two events converge to activate ADAR1 in multiple myeloma, a genetic abnormality and inflammatory cues from the surrounding bone marrow tissue. Together, these signals activate ADAR1, which edits specific RNA in a way that stabilizes a gene that can make cancer stem cells more aggressive. They also found that silencing the ADAR1 gene in the xenograft model reduced multiple myeloma regeneration. Five to 10-fold fewer tumor cells were able to self-renew in mice lacking ADAR1, suggesting a new therapeutic target.

Catriona H. M. Jamieson, MD, PhD, professor of medicine and senior author of the study, said, “Several major advances in recent years have been good news for multiple myeloma patients, but those new drugs only target terminally differentiated cancer cells and thus can only reduce the bulk of the tumor. They don't get to the root cause of disease development, progression and relapse, cancer stem cells, the way inhibiting ADAR1 does. I like to call our approach 'precision regenerative medicine.” The study was published on December 4, 2017, in the journal Nature Communications.

Related Links:
University of California San Diego School of Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.