We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Molecular Test Predicts Blood Cancer Patient Survival

By LabMedica International staff writers
Posted on 24 May 2017
Technology that can detect the length of small DNA structures in cancer cells could hold the key to predicting the outcome of patients with two different types of blood cancer. More...
The test, used in conjunction with current methods, may help doctors make better choices about the most appropriate and effective treatment option for individual patients.

Telomeres are protective stretches of DNA that cap the end of chromosomes, and act like plastic tips on shoelaces preventing chromosome ends from fraying and sticking to each other. Every time a cell divides the telomeres gradually shorten and eventually leave the chromosome ends exposed, triggering large-scale DNA damage that accelerates cancer progression and drug resistance.

A team of scientists led by those at Cardiff University used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukemia (AML) patients. After extracting chromosomes from the patients' cancer cells, the team measured telomere length in each sample using the STELA technology they had previously developed. Telomere length was then checked against patients' medical records to analyze its impact on disease progression and survival.

The team found that while the current system was generally a good indicator of survival times, telomere length had a significant independent impact on survival. Myeloma patients who had a “good” or “standard” risk score under the current system, but had short telomeres, had the same average survival times as patients in the “high-risk” group who had long, functional telomeres. A total of 55% of patients who had long telomeres in the 'good' or 'standard' risk groups lived for over 16 years, compared to just 21% of patients in these risk groups who had short telomeres. In common with patients with myeloma, they found that differing rates of telomere erosion had a clear impact on survival. Only 7% of MDS patients with short telomeres survived for more than eight years compared with 46% of patients with long telomeres.

Duncan M Baird, PhD, a professor who led the study said, “We really need to improve the way we predict how an individual patient's myeloma or MDS will behave, as these conditions can vary widely in outcome. Our study provides strong evidence that shortening of telomeres plays a vital role in the progression of these blood cancers and that a significant number of patients should be receiving different levels of treatment.” The study was published on May 9, 2017, in the British Journal of Hematology.


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.