We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Increased Immune Reaction Associated with Myeloproliferative Neoplasia

By LabMedica International staff writers
Posted on 03 Mar 2017
Print article
Image: Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells (Photo courtesy of Ed Uthman).
Image: Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells (Photo courtesy of Ed Uthman).
Patients afflicted by myeloproliferative neoplasia, which are a group of chronic malignant bone marrow diseases, bear a mutation in their hematopoietic stem cells. The mutation leads to the bone marrow producing too many blood cells, which thickens the blood.

It has recently discovered that certain cells of the immune system also bear this mutation in those patients that possess a particularly large number of altered stem cells. The impact of this scenario on the defense against pathogens has been investigated.

Scientists at Helmholtz Centre for Infection Research investigated patients with different severities of myeloproliferative neoplasia. The bone marrow harbors the hematopoietic stem cells that produce the various types of red and white blood cells and platelets. They are induced to do so by messenger substances that bind to them and trigger a reaction chain, in which many different components partake. In a rare malignant group of blood diseases called myeloproliferative neoplasia (MPN), most of the patients have hematopoietic stem cells that bear an error in their genetic material, known as a mutation.

The mutation usually resides in a certain component of the reaction chain called Janus kinase 2 (JAK2) and causes the signal for haematopoiesis to be permanently switched on in the stem cells. Depending on which type of stem cell is afflicted, the bone marrow of the patients produces the corresponding blood cells and the blood becomes too thick and may clog the vessels. MPN patients usually are treated with an inhibitor of JAK2 that suppresses the continuous signal triggering hematopoiesis. However, this also weakens the immune cells such that the patients become more susceptible to infections.

The scientists found that 60% of the patients, who have a particularly large number of damaged stem cells, bear the mutation in their so-called T cells as well. These cells of the immune system specifically fight against pathogens that entered the body. The scientists then infected mice with Listeria monocytogenes. Listeria bacteria colonize food items and can cause severe infections in humans including meningitis. When the scientists investigated the mice, they found: seven days after the infection with Listeria, the mice with the mutated T cells had 100-fold lower levels of bacteria in their spleen than the control mice. They had formed clearly more specific T cells directed against Listeria and were thus able to control the infection better than the control animals without a mutation in T cells.

Dirk Schlüter, MD, a professor and senior author of the study said, “It was previously unknown that so many MPN patients bear the mutation in their T cells as well. In order to find out what this actually means for the patients, we combined the clinical studies with studies on mice.” The study was published on January 11, 2017, in the journal Leukemia.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.