We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel Device Measures Stiffness and Stickiness in Erythrocytes

By LabMedica International staff writers
Posted on 13 Mar 2016
In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). More...
Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion, known as vaso-occlusion, in SCD patients.

Red blood cells (erythrocytes) containing normal hemoglobin are flexible and shaped like a doughnut with a thin flat area in the middle instead of a hole. This allows them to squeeze round bends in blood vessels and through smaller ones to deliver vital oxygen to tissues and organs. However, sickle hemoglobin has a tendency to form stiff rods inside the red blood cell, changing it into the crescent or sickle shape that gives the disease its name.

Scientists at Case Western Reserve University (Cleveland, OH, USA) used a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. They measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbSS) containing RBCs in blood samples obtained from 24 subjects.

The microfluidic system is composed of a Poly(methyl methacrylate) (PMMA) cover, a double sided adhesive (DSA) layer, and a glass slide base. Microfluidic channels are functionalized with fibronectin, which mimics the microvasculature wall in a closed system and can process whole blood. Adhered sickled RBCs deform in microfluidic channels in response to applied flow shear stress. By assessing the extent of stiffness and stickiness, or the "dynamic deformability and adhesion," of red blood cells, the new microfluidic device offers great potential as a way to monitor progression of sickle cell disease. Other ways to measure stiffness and stickiness in red blood cells, such as atomic force microscopy and optical tweezers do exist, but they do not lend themselves to working with whole blood in a clinical setting.

To assess dynamic deformability of red blood cells, the investigators used what they call a dynamic deformability index (DDI), which they define as "the time-dependent change of the cell's aspect ratio. Essentially, a cell's DDI is a measure of how quickly it springs back to its normal shape after experiencing flow shear stress. The team describes a range of tests where they measured the DDI of deformable and non-deformable red blood cells. They also compared adhesion of deformable and non-deformable red blood cells from blood samples taken from sickle cell patients. They tested the stickiness of the cells under different flow shear stresses, both within and outside ranges experienced in normal blood vessels.

The scientists showed that DDI of HbSS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, they observed subpopulations of HbSS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, they tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. They observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. The study was published on February 19, 2016, in the journal Technology.

Related Links:

Case Western Reserve University



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Unstirred Waterbath
HumAqua 5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.