We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Common Leukemia Induced by Single Mutation in Osteoblasts

By LabMedica International staff writers
Posted on 06 Feb 2014
Acute myeloid leukemia (AML) is a blood cancer, but for many patients the cancer may originate from an unusual source: a mutation in their bone cells, called osteoblasts. More...


Cells of the osteoblast lineage affect the homing and the number of long-term repopulating hematopoietic stem cells, hematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis.

Scientists at the Columbia University Medical Center (New York, NY, USA) and colleagues from other institutes found that a mutation in the osteoblasts, which build new bone, causes AML in mice. Bone marrow biopsies from patients with AML and myelodysplastic syndromes (MDS) were consecutively obtained from 2000 to 2008. Using many different techniques the investigators found that AML was caused by a mutation in the β-catenin gene in the animals' osteoblasts.

The mutation leads to cancer in adjacent bone-marrow stem cells through a series of events. First, the mutated β-catenin protein moves from its normal location on the exterior of the osteoblast to the cell's nucleus, where it turns on production of a protein called jagged1. Jagged1 proteins are then transported to the osteoblast's exterior membrane, where they can bind to Notch proteins, which activate signaling pathways, on neighboring bone-marrow stem cells. When this happens, Notch transmits signals inside the bone-marrow stem cells that ultimately transform the cells to leukemia. When the investigators looked at cells from AML and MDS patients, the scientists documented similar changes in β-catenin, jagged1, and Notch signaling in 38% of the patients.

Azra Raza, MD, a coauthor of the study said, “After the observation that a mutation affecting β-catenin in the bone marrow microenvironment cells of mice can cause leukemia, the team then extracted bone marrow samples of patients with MDS and AML from their tissue repositories, to confirm a similar pathway in a subset of patients. This incredibly important observation opens the possibilities of novel therapies for these dreaded diseases using non-chemotherapeutic approaches.”

AML is one of the most common types of leukemia in adults, with about 15,000 cases diagnosed in the USA each year. The disease progresses rapidly, and only about 25% survive three years after diagnosis. MDS is a group of blood disorders diagnosed in about 10,000 people in the USA each year and many people with MDS eventually develop AML. The study was published on January 15, 2014, in the journal Nature.

Related Links:

Columbia University Medical Center


New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Laboratory Software
ArtelWare
New
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.