Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sound Waves Diagnose Blood-Related Diseases

By LabMedica International staff writers
Posted on 16 Jul 2013
A method has been developed that can rapidly quantify variations in the morphology of single red blood cells (RBCs) using light and sound. More...


When irradiated with a laser pulse, an RBC absorbs the optical energy and emits an ultrasonic pressure wave called a photoacoustic wave, which contains distinctive features that can be used to identify the erythrocyte’s size.

Biophysicists at Ryerson University (Toronto, ON, Canada) used a special photoacoustic microscope that detects sound. They were able to differentiate healthy red blood cells from irregularly shaped red blood cells with high confidence, using a very small sample size. Because each measurement takes only fractions of a second, the method could eventually be incorporated into an automated device for rapid characterization of red blood cells from a single drop of blood obtained in the clinic.

All measurements were completed using a photoacoustic microscope developed by Kibero (Saarbrücken, Germany). This is an Olympus IX81 inverted optical microscope (Tokyo, Japan) fitted with a transducer above the sample stage. Deviations from the regular biconcave shape of a red blood cell are a significant indicator of blood-related diseases, whether they result from genetic abnormalities, from infectious agents, or simply from a chemical imbalance.

As an example, malaria patients' red blood cells are irregularly swollen, while those of patients with sickle cell anemia or drepanocytosis take on a rigid, sickle shape. The scientists used a single wide-bandwidth transducer sensitive to frequencies between 100 MHz and 500 MHz, to differentiate healthy RBCs from irregularly shaped RBCs, such as echinocytes, spherocytes, and swollen RBCs, with high confidence using sample size of just 21 erythrocytes.

The authors concluded that the photoacoustic spectral methods are a first step toward an automated process for the detection of RBC abnormalities via morphological identification with good sensitivity. With some refinement, these methods could eventually be used in a clinical setting to help diagnose RBC pathology using just a single drop of blood. Michael Kolios, PhD, the senior author of the study said, “We plan to make specialized devices that will allow the detection of individual red blood cells and analyze the photoacoustic signals they produce to rapidly diagnose red blood cell pathologies.” The study was published on July 2, 2013, in the Biophysical Journal.

Related Links:

Ryerson University
Kibero
Olympus



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.