We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

24 Feb 2024 - 28 Feb 2024
05 Mar 2024 - 07 Mar 2024

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

By LabMedica International staff writers
Posted on 24 Apr 2023
Print article
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes a significant economic burden on global healthcare systems. Numerous studies have established connections between various cardiovascular diseases and specific protein biomarkers in the blood. However, current methods for analyzing these protein biomarkers, such as ELISA or western blot assays, involve multistep, reagent-intensive processes and require specialized laboratory equipment, limiting their practical applicability and resulting in delayed treatment, reduced compliance, and worse outcomes. Consequently, there is an urgent need for novel methods that enable direct, reagent-free analysis of molecular analytes to identify cardiovascular abnormalities in their early stages and prevent or mitigate their progression.

A team of researchers at University of Toronto (Ontario, Canada) and Northwestern University (Evanston, IL, USA) has designed an electronic biosensor utilizing DNA aptamers to detect biomarkers in whole blood samples without the need for additional reagents. These DNA aptamers recognize marker proteins as effectively as antibodies, but they are simpler to produce and more versatile. The biosensor successfully identified clinically relevant levels of a cardiovascular disease marker protein without further sample preparation.

The researchers' goal was to create diagnostic tools capable of directly, reliably, and in-field detection of disease biomarkers, eliminating the need to send samples to specialized labs for analysis. The chip-based device developed by the researchers employs chronoamperometric measurements to identify marker proteins in complex samples. Their nanoscale sensor system functions as a molecular "pendulum," measuring the extra load a protein places on the pendulum, which consists of a DNA strand attached to an electrode, without requiring external reagents.

While antibodies are typically used to locate and bind marker proteins in complex mixtures, their complexity makes designing and producing them a challenge. Instead, researchers found that smaller, simpler DNA aptamers can be used as alternatives to antibodies. DNA aptamers are short synthetic fragments with specific shapes and structures, relatively easy and inexpensive to produce, and their structures can be customized. Like antibodies, DNA aptamers can bind marker proteins through molecular and structural interactions but are simpler to design.

The researchers developed an aptamer-based sensor by creating a DNA aptamer specific to B-type natriuretic peptide (BNP), a cardiovascular disease biomarker, and connecting it to the DNA pendulum strand tethered to a gold electrode, forming the molecular pendulum sensor. This biosensor effectively detected BNP, even in complex samples such as unprocessed whole blood from cardiac patients. As the sensitivity of the aptamer-based system was found to be comparable to that of antibody-based detection, the researchers recommend further exploration and adoption of DNA aptamers for laboratory-independent diagnostics.

Related Links:
University of Toronto 
Northwestern University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary

Print article

Channels

Clinical Chemistry

view channel
Image: Wireless Point-of-Care Testing for Hepatitis B Virus (Photo courtesy of Chulalongkorn University)

Wireless Hepatitis B Test Kit Completes Screening and Data Collection in One Step

Hepatitis B, a significant global health concern, is responsible for chronic liver diseases like cirrhosis and liver cancer which is one of the most common cancers worldwide. The challenge with hepatitis... Read more

Molecular Diagnostics

view channel
Image: Aptiva utilizes particle-based multi-analyte technology (PMAT) (Photo courtesy of Werfen)

Novel Immunoassays Enable Early Diagnosis of Antiphospholipid Syndrome

Antiphospholipid syndrome (APS) is an autoimmune disorder that typically presents as venous or arterial thrombosis and/or pregnancy loss. Diagnosing APS can be difficult as its symptoms often resemble... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.