We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App





FTIR-Based Saliva Test Detects Body’s Response to COVID-19

By LabMedica International staff writers
Posted on 11 Mar 2022
Print article
Image: Agilent Cary 630 FTIR spectrometer (Photo courtesy of Agilent Technologies Inc.)
Image: Agilent Cary 630 FTIR spectrometer (Photo courtesy of Agilent Technologies Inc.)

A potential new saliva test can rapidly detect COVID-19 infection and may even indicate if a person is likely to become seriously unwell by reading the chemical signature in a person’s saliva. The researchers found the test worked by detecting the body’s response to COVID-19 rather than just the virus itself – making it different from PCR and rapid antigen tests. In addition, the researchers also established a decontamination procedure that would allow infected samples to be safely handled and tested on the spot.

In a study, researchers at the QIMR Berghofer Medical Research Institute (Brisbane, Australia) collaborated with Agilent Technologies Inc. (Santa Clara, CA, USA) on a proof-of-concept FTIR-based saliva COVID-19 testing workflow using the Agilent Cary 630 FTIR Spectrometer. The study investigated the pathophysiological response to a COVID-19 infection through ATR-FTIR spectroscopy. The researchers acquired infrared spectra of saliva samples following a quick and simple sample preparation requiring only ethanol and basic laboratory equipment. An infrared spectrum can be considered as a biochemical snapshot of the saliva sample including a COVID-19 immune response signature. Unlike other testing technologies such as PCR testing or rapid antigen test, the ATR-FTIR method analyses the pathophysiological responses of the human body rather than detecting the pathogen/antigen itself, which is thought to make this method more robust against virus mutations.

“We applied a simple ethanol decontamination procedure for biosafe handling of self-collected saliva samples. A basic step of significant importance for any test that has the potential to be used in non-clinical environments such as in remote areas or in scenarios where large crowds require rapid testing, for example, in airports, or sports stadiums,” explained associate professor Michelle Hill, head of QIMR Berghofer’s Precision and Systems Biomedicine Research Group, and one of the lead scientists of the study.

“Earlier research studies on ATR-FTIR for COVID-19 saliva testing were not conclusive on the biological basis for the saliva testing methodology. To shine a light on this aspect, we also conducted controlled infection experiments on cells and mice models and established the most characteristic COVID-19 positive spectral signature. We integrated our data from in vitro cell studies, in vivo mouse studies, and independent human cohort studies, as well as data from recent publications to demonstrate the robustness of the methodology,” Hill added.

“We are very excited about this research study. FTIR spectroscopy is an easy-to-use analytical technique, uses minimal consumables, and provides results in seconds,” said Andrew Hind, associate vice president of Research and Development for the Molecular Spectroscopy Division at Agilent. “It emphasizes the potential of ATR-FTIR spectroscopy for life science and infectious disease research. Agilent funded parts of this research work through the Agilent Technologies Applications and Core Technology - University Research Grant and provided the Cary 630 FTIR Spectrometer. We will continue to support work in the field of COVID-19 and infectious diseases research.”

Related Links:
QIMR Berghofer Medical Research Institute 
Agilent Technologies Inc.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.