We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





Compact CRISPR System Enables Portable COVID-19 Testing

By LabMedica International staff writers
Posted on 30 Nov 2021
Print article
Illustration
Illustration

A new form of CRISPR technology that takes advantage of a compact RNA-editing protein could lead to improved diagnostic tests for COVID-19.

The platform, developed by bioengineers at King Abdullah University of Science and Technology (KAUST; Makkah, Saudi Arabia), relies on a miniature form of the Cas13 protein that some microbes use to defend themselves from viruses. This RNA-cutting enzyme can be designed to cleave any target sequence, including parts of the genome from SARS-CoV-2, the novel coronavirus responsible for the COVID-19 pandemic.

By pairing the Cas13 system with a simple nucleic acid amplification method, a handheld optical reader and a smartphone, the researchers created a low-cost, point-of-care test that could accurately diagnose COVID-19 from throat and nose swab samples taken from patients. The approach proved reliable and accurate with a fast turnaround time, from clinical sampling to a diagnostic result in just a few hours. A COVID-19 test represents just one potential application of the technology, and other diagnostic or therapeutic uses could soon follow, according to the researchers.

The miniature Cas13 system may also be useful as an antiviral therapeutic. The compact nature of the new Cas13 protein makes it easier to package the gene-editing machinery into a viral vector, the standard method for transferring CRISPR components into human cells. Once inside cells, the system could be used therapeutically to alter the expression of disease-associated genes or to destroy pathogens such as the influenza virus.

What’s more, the small size of this novel protein allows for simple protein engineering, according to the researchers. And with further molecular tweaks, the KAUST team aims to expand the toolkit of potential Cas13-related applications. The researchers have filed a patent application connected to their CRISPR-Cas13 system. To refine their diagnostic method, they have also continued their search for novel Cas13 proteins.

“Our modality demonstrates several key features, including simplicity, specificity, sensitivity and portability,” said bioengineer Magdy Mahfouz who developed the platform. “This work demonstrates that bacterial defence systems have untapped potential for diverse synthetic biology applications.”

“We aim to develop next-generation sensors that can be applied for the detection of nucleic acids as well as other molecules, such as environmental molecules,” said Ahmed Mahas, a Ph.D. student in Mahfouz’s lab.

Related Links:
KAUST 

Automated ELISA-IFA-BLOT Processor AP 22
Gold Supplier
COVID-19 Real Time RT-PCR Kit
respiraScreen 1
New
Semi-Auto Biochemistry Analyzer
TC-ChemX50
New
POC Laboratory IT Solution
AQURE POC IT Solution

Print article

Channels

Molecular Diagnostics

view channel
Image: A new machine rapidly and robustly separates cancer cells from blood samples (Photo courtesy of DGIST)

System Separates Circulating Tumor Cells from Blood Samples, Improves Cancer Diagnostics

Circulating tumor cells are cells that break off from cancers and are released into the blood stream. They can go on to form the seeds for new tumor formation in other parts of the body, known as metastases.... Read more

Industry

view channel
Image: Fujirebio has acquired ADx NeuroSciences for 40 million Euros (Photo courtesy of Pexels)

Fujirebio's Belgian Acquisition Targets Neurodegenerative Diagnostics

Fujirebio Holdings, Inc. (Tokyo, Japan) has announced the acquisition of ADx NeuroSciences (Gent, Belgium) for EUR 40 million in a deal that is expected to close in July 2022, pending the satisfaction... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.