We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New CRISPR-Based Technology Could Revolutionize COVID-19 Diagnostics

By LabMedica International staff writers
Posted on 17 Aug 2021
A new CRISPR-based technology could revolutionize antibody-based COVID-19 medical diagnostics. More...


Scientists at Harvard Medical School (Boston, MA, USA) and Brigham and Women’s Hospital (Boston, MA, USA) have repurposed the genetic modification technology CRISPR to identify antibodies in patient blood samples in a move that could inspire a new class of medical diagnostics in addition to a host of other applications. The technology involves customizable collections of proteins which are attached to a variant of Cas9, the protein at the heart of CRISPR that will bind to DNA but not cut it as it would when used for genetic modification. When these Cas9-fused proteins are applied to a microchip sporting thousands of unique DNA molecules, each protein within the mixture will self-assemble to the position on the chip containing its corresponding DNA sequence.

The researchers have called this technique ‘PICASSO’, short for peptide immobilization by Cas9-mediated self-organization. By then applying a blood sample to the PICASSO microarray, the proteins on the microchip that are recognized by patient antibodies can be identified. The research team has demonstrated that the technology works to assemble thousands of different proteins, suggesting that it could be readily adapted as a broad-spectrum medical diagnostic tool. They used the technique to detect antibodies binding to proteins derived from pathogens, including SARS-CoV-2, from the blood of recovering COVID-19 patients.

“In this work, we demonstrated the application of PICASSO for protein studies, creating a tool that we believe could be quickly adapted for medical diagnostics,” said Dr. Karl Barber, a 2018 Schmidt Science Fellow. “Our protein self-assembly technique could also be harnessed for the development of new biomaterials and biosensors just by attaching DNA targets to a scaffold and allowing Cas9-linked proteins to bind.”

“This technology has the potential to be used as a medical diagnostic tool that could, one day, provide doctors with a way to quickly determine the diagnosis and best course of treatment for each individual patient,” added Dr. Megan Kenna, Executive Director of Schmidt Science Fellows.

Related Links:
Harvard Medical School
Brigham and Women’s Hospital



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Portable Electronic Pipette
Mini 96
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.