We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
FUJIREBIO

Download Mobile App





New Diagnostic Device Identifies COVID-19 Patients at Risk of Potentially Lethal Cytokine Storm

By LabMedica International staff writers
Posted on 19 Feb 2021
Print article
Image: The  Immuno-storm chip is about the size of a 20c coin (Photo courtesy of AIBN)
Image: The Immuno-storm chip is about the size of a 20c coin (Photo courtesy of AIBN)
Researchers have developed a diagnostic device, called an Immuno-storm chip, that could identify which cancer and COVID-19 patients are at risk of a potentially lethal ‘cytokine storm’.

The device was invented by scientists from the Australian Institute for Bioengineering and Nanotechnology (AIBN) at The University of Queensland (Queensland, Australia) and could help healthcare workers triage and closely monitor high risk patients and to begin treatment much earlier.

Cytokines are small proteins that act as messengers between cells in the immune system. They play a critical role in triggering inflammation by stimulating the movement of immune cells toward sites of injury or infection. However, if the release of cytokines becomes uncontrolled, this causes hyperinflammation which damages tissue. This, in turn, causes more cytokines to be released in a vicious, potentially lethal cycle called a ‘cytokine storm’. Cytokine storms can arise during a variety of diseases, as well as in response to immune-therapies. Unfortunately, it’s very difficult to predict who will develop a cytokine storm. Until recently, they were thought to arise very suddenly, but there is now evidence that a very faint but distinctive pattern of cytokines begins to emerge several days before the full-blown storm.

Scientists at the AIBN have developed a nanotechnology device, called an Immuno-storm chip, that can detect this early warning signal on a miniaturized platform with minimal sample. They designed a nanoscale array of gold pillars to which they attached antibodies that stick to specific cytokines in blood. If these cytokines are present in a blood sample as small as a single drop, they will bind to the gold ‘nanopillars’. These captured cytokines are then detected by gold-silver ‘nanotag’ particles. The team designed these nanotags to emit light whenever they encounter a cytokine. The chip’s small size - about the size of a SIM card - meant the diagnostic technology could eventually be made relatively portable.

“Whether in a cancer treatment setting or when monitoring infectious diseases such as acute COVID-19, long-haul COVID-19 and sepsis, the Immuno-storm chip could provide critical medical information that guides important clinical decisions. Critically, it could inform doctors to begin, or to ease off treatments, by accurately monitoring the patient’s immune response before it goes crazy,” said Professor Matt Trau, a researcher AIBN. “Detection of the detailed cytokine signature for vulnerable COVID-19 patients with the Immuno-storm chip could also be used to personalize the therapy of these patients, tuned in to alleviate their specific excessive immune system response.”

Related Links:
The University of Queensland

Gold Supplier
Virus Transport and Preservation Medium – Inactivated
Virus Transport and Preservation Medium – Inactivated
New
Gold Supplier
POC Analyzer
Epithod 616
New
Gold Supplier
SARS-CoV-2 Assay
SARS-CoV-2 UTAB FS
Flu + SARS Antigen Test
Sofia 2 Flu + SARS Antigen FIA

Print article

Channels

Molecular Diagnostics

view channel
Image: Histopathologic image from a patient with Li Fraumeni syndrome showing accumulation of mutant TP53 in tumoral cells (Photo courtesy of Thierry Soussi, PhD).

Clinical Germline Testing Evaluated for Pediatric Cancer Patients

Pediatric cancer is rare, with fewer than 10,000 solid tumors diagnosed in children annually in the USA. Previous studies interrogating germline predisposition broadly across pediatric cancer types have... Read more

Industry

view channel
Illustration

Mindray and Tencent AI Lab to Jointly Develop AI Products for Blood Disease Screening and In Vitro Diagnosis

Shenzhen Mindray Biomedical Electronics Co., Ltd. (Shenzhen, China) has signed an AI cooperation framework agreement with Tencent AI Lab (Shenzhen, China) to jointly develop AI products for blood cell... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.