We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

NIH Develops Robust SARS-CoV-2 Serology ELISAs from Serum and Dried Blood Microsamples

By LabMedica International staff writers
Posted on 08 Jan 2021
Print article
Image: A study participant collects blood at home using a Mitra device with VAMS technology from Neoteryx (Photo courtesy of Neoteryx)
Image: A study participant collects blood at home using a Mitra device with VAMS technology from Neoteryx (Photo courtesy of Neoteryx)
In order to achieve the high levels of specificity and sensitivity needed for its "serosurvey" to track undetected cases of COVID-19 in the US, researchers at the National Institutes of Health (NIH Bethesda, MA, USA) have developed two assays to detect the spike protein and receptor binding protein, achieving sensitivity of 100% (95% CI 76.8%, 100%), and specificity of 100% (95% CI 96.4%, 100%).

In its paper on its serology study for development of an ELISA that detects SARS-CoV-2 antibodies with 99-100% specificity, the NIH’s protocol defines initial thresholds for IgG and IgM antibodies to determine seropositivity from both clinical and at-home blood samples using the Mitra device from Neoteryx LLC (Torrance, CA, USA), with a reduced risk of false positives. This protocol is key to helping NIH researchers and scientists in other labs and research organizations confidently determine the extent to which the coronavirus has spread undetected, which communities are most affected, and who has developed SARS-CoV-2 antibodies.

The NIH researchers are sharing this information so other laboratories can replicate the steps for SARS-CoV-2 antibody testing using both serum and Mitra blood microsamples for similar studies. As a next step, NIH research teams at NIAID, NIBIB, NCATS and NCI are analyzing thousands of blood microsamples collected by citizens using Mitra devices in at-home Mitra Blood Collection Kits.

"The NIH ELISA-based serology protocol using Mitra microsampling devices with VAMS technology from Neoteryx gives all scientists a reliable method for identifying SARS-CoV-2 raised antibodies in blood microsamples with amazing specificity, which is critical during the coronavirus pandemic," said James Rudge, PhD, Technical Director, Neoteryx. "Many tests that were rushed out early in the COVID-19 crisis, did not have the high sensitivity and high specificity necessary to reliably detect key antibodies that indicate an immune response specific to COVID-19 versus some other type of coronavirus. The ELISA protocol from the NIH enables SARS-CoV-2 immunity studies that deliver accurate data, and we're very proud that our Mitra microsampling devices with VAMS technology supported this impressive achievement."

Related Links:
The National Institutes of Health (NIH)
Neoteryx LLC

Print article


Molecular Diagnostics

view channel
Image: Histopathology of neurofibrillary tangles in the brain of a patient with Alzheimer`s disease (Bielschowski silver stain) (Photo courtesy of Dimitri P. Agamanolis, MD).

Alzheimer's Disease Subtypes Proposed from Brain Gene Expression Profiles

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, estimated to affect more than 5.8 million individuals in the USA and more than 50 million worldwide, with almost half of individuals... Read more


view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.