Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App





New, Portable COVID-19 Saliva-Based Testing Device to Deliver Results in as Little as 20 Minutes

By LabMedica International staff writers
Posted on 28 Sep 2020
Researchers at Arizona State University (ASU Tempe, AZ, USA) are developing a new, portable saliva-based testing device that will deliver results in as little as 20 minutes.

In May, researchers at ASU’s Biodesign Institute produced the Western United States’ first FDA-approved saliva-based COVID-19 test - one of only a handful available in the country - with test results delivered in 24–48 hours. More...
The team is now building a new, portable saliva-based testing device, also referred to as a point-of-need test, which will allow users to easily provide a saliva sample on a computer chip that will quickly detect whether the virus is present. The project is being funded by USD 5.2 million in CARES Act dollars from the governor’s office and USD 860,000 from the Arizona Department of Health Services.

The new rapid saliva test detects the viral RNA and combines the ease of use and speed of the newly FDA-approved antigen tests with greater accuracy similar to PCR-based RNA tests. If the virus is detected, a strong, green fluorescent signal is generated on the device. Also, unlike the PCR method, which needs a few hours of time because of several steps performed at different temperature cycles, this device is being designed to have all of the reactions performed at the same temperature.

A key point of the project will be mobility. Researchers envision a "plug and play" cartridge system that could be used by the ASU Biodesign Institute saliva-testing robotics system or implemented by practitioners without needing extensive training. By keeping the device small and portable, it can be rapidly employed and scaled in case of a surge in infection and done so locally and in a distributed fashion.

The ultimate goal is to have these devices accessible in public places such as doctors’ offices, workplaces and other densely populated areas. Through early detection, preventative measures can minimize contact risk and ensure safe spaces. Although the project is expected to generate working prototypes in six months and apply for FDA emergency-use authorization approval for COVID-19 testing, the team has already worked to align their technology with several companies for scalable production.

“We are of the view that this virus will be with us in some capacity for the foreseeable future; therefore, we need to develop the most sophisticated tools in order to help manage it,” said ASU President Michael M. Crow.

“Ultimately, we want to produce something easy to use so anyone could ‘spit on a chip’ while waiting for results for a few minutes and then be cleared for everyday activities or events, or rapidly isolated or ID’d as infected,” said Mark Hayes, one of the ASU professors leading the efforts to develop the new COVID-19 testing device.

Related Links:
Arizona State University


Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Portable Electronic Pipette
Mini 96
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.