We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





No-Touch, Paper-Based COVID-19 Diagnostic Test Could Detect SARS-CoV-2 Using Electrical Frequencies

By LabMedica International staff writers
Posted on 06 Aug 2020
Print article
Image: No-Touch, Paper-Based COVID-19 Diagnostic Test Could Detect SARS-CoV-2 Using Electrical Frequencies (Photo courtesy of Iowa State University)
Image: No-Touch, Paper-Based COVID-19 Diagnostic Test Could Detect SARS-CoV-2 Using Electrical Frequencies (Photo courtesy of Iowa State University)
Researchers from the Iowa State University (Ames, IA, USA) are developing a closed, contact-free diagnostic sensing system that could be used to quickly test for COVID-19 or other outbreaks.

The researchers aim to develop a low-cost, mail-safe, fast-scan “diagnostic platform that is well-suited for widespread monitoring of infection during pandemics. The USD 1 (or so) COVID-19 diagnostic test kit would allow anyone to take their own nasal and cough samples. The samples would be spread on a card which can be stuffed in an envelope with a virus-killing coating and allowed to incubate overnight. The envelope can then be dropped at a collection center or in the mail. The unopened envelope would be scanned by an electronic reader to determine a positive or negative result. Then, that never-opened envelope, samples and all, would be dropped in an incinerator. The electronic reader would automatically text or email the results to the sender.

The key to the technology is a new sensor system based on “toehold switches” that detect target RNA genetic material. That detection triggers production of “reporter” proteins that can change the color of a sensor or, in this case, the frequency of a sensor’s signal. The finished product would involve a multilayered assembly on thick paper. The top layer would hold collected nasal or cough samples, the middle layers would contain the toehold switch, and the bottom layers would have a printed, coiled resonant circuit that can be scanned for telltale frequencies. If there’s target COVID-19 RNA in the samples, the toehold switch would allow production of proteins that degrade a coating on the circuit resulting in a positive signal. If there’s no virus RNA, there’s no protein production, no coating degradation and a negative signal.

The approach would reduce the burden of diagnostics from health workers, eliminate the increased use of limited personal protective equipment, and provide a better response to outbreaks. It would also provide a real-time outbreak map with demographic details to help public health officials monitor the infection. Additionally, the technology can be tuned to detect other diseases or even future pandemics.

“We’re trying to make it so that no one has to touch the samples,” said Nigel Reuel, an assistant professor of chemical and biological engineering at Iowa State University. “The driving motivation of this project is to provide a faster response to enable widespread screening and tracking of an expanding viral outbreak.”

Related Links:
Iowa State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.