We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Wearable Sensing Patch Enables Rapid Quantitative Analysis of Urea in Body Fluids

By LabMedica International staff writers
Posted on 24 Feb 2023
Print article
Image: New approach enables faster testing of urea in body fluids (Photo courtesy of HFIPS)
Image: New approach enables faster testing of urea in body fluids (Photo courtesy of HFIPS)

Urea, which is excreted in sweat, urine, saliva and blood, is a key indicator of renal function in clinical diagnosis. Effective determination of urea levels can enable early detection of diseases. There has been growing focus on wearable fluorescence-based sensors, although traditional fluorescent hydrogels are excited by short wavelengths, hampering the detection of biological samples. Now, researchers have developed a wearable sensing patch that enables the rapid quantitative analysis of urea.

Spontaneous and background fluorescence can interfere with the detection of biological samples. Upconversion nanoparticles (UCNPs), which can eliminate the self-fluorescence and background interference of biological samples, are an effective strategy for detecting human biomarkers with high sensitivity. Researchers from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (Beijing, China) have developed a polyacrylamide (PAM) hydrogel sensor based on an upconversion optical probe, which was composed of UCNPs and p-dimethylamino-cinnamaldehyde (p-DMAC). As a result of the internal filtration effect, the red product produced by the reaction of urea and p-DMAC quenched the green fluorescence of the UCNPs and caused the upconversion fluorescence to change from yellow to red, thus realizing the fluorescence detection of urea.

Based on this, the researchers fabricated a flexible wearable sensor by combining PAM hydrogel and a portable sensor platform built using 3D printing technology. The researchers found the limits of detection of the self-designed upconversion fluorescent probe and the hydrogel sensor to be just 1.4 μM and 30 μM, respectively, which was much lower than the urea content in sweat, implying higher sensitivity. The sensor patch design paves the way for a convenient approach to accurately detect biomarkers in body fluids and for development into a device that could provide disease warning and clinical diagnosis, according to the researchers.

Related Links:
Chinese Academy of Sciences

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.