We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

WATERS CORPORATION

Waters Corp. designs, manufactures, sells and services ultra performance liquid chromatography (UPLC), high performan... read more Featured Products: More products

Download Mobile App




Cell-Specific Bioorthogonal Tagging of Glycoproteins Developed

By LabMedica International staff writers
Posted on 31 Oct 2022
Print article
Image: Development of an artificial biosynthetic pathway for chemically tagged UDP-GalNAc/GlcNAc analogues (Photo courtesy of Benjamin Schumann, PhD)
Image: Development of an artificial biosynthetic pathway for chemically tagged UDP-GalNAc/GlcNAc analogues (Photo courtesy of Benjamin Schumann, PhD)

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumor and host cannot be adequately recapitulated in monoculture of tumor-derived cell lines.

Cancer is a multifactorial disease consisting of an interplay between host and tumor. Posttranslational modifications (PTMs) heavily impact the plasticity of the proteome. Glycosylation is the most complex and most abundant PTM, but challenging to probe due to the non-templated nature of glycan biosynthesis.

Chemists and Biochemists at the Imperial College London (London, UK) have developed a new method to study the proteins released by cells, which could lead to the development of new tools to track diseases including cancer. Their method identifies proteins released by a specific type of cell, even if the cells are in a complex environment with many different cell types. The method is called Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG).

The method uses bioorthogonal chemistry or click chemistry. The chemical tag is selected so that it "clicks" with another molecule that helps the scientists isolate the desired proteins or add a fluorescent tag to them. The investigators showed that BOCTAG worked in cell cultures with multiple cell lines and in mice, where they successfully tagged proteins from specific cancer cells. This method could also be used in fields such as immunology, infectious diseases, and to better understand disease biology, particularly how tumor cells change as a result of complex interactions in the body.

Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. The team employed BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) equipped with a ACQUITY UPLC BEH Glycan (Waters Corporation, Milford, MA, USA). They demonstrated application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function. The study was published on October 25 2022 in the journal Nature Communications.

Related Links:
Imperial College London
Waters Corporation

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.