We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Octopus Group


Waters Corp. designs, manufactures, sells and services ultra performance liquid chromatography (UPLC), high performan... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Cell-Specific Bioorthogonal Tagging of Glycoproteins Developed

By LabMedica International staff writers
Posted on 31 Oct 2022
Print article
Image: Development of an artificial biosynthetic pathway for chemically tagged UDP-GalNAc/GlcNAc analogues (Photo courtesy of Benjamin Schumann, PhD)
Image: Development of an artificial biosynthetic pathway for chemically tagged UDP-GalNAc/GlcNAc analogues (Photo courtesy of Benjamin Schumann, PhD)

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumor and host cannot be adequately recapitulated in monoculture of tumor-derived cell lines.

Cancer is a multifactorial disease consisting of an interplay between host and tumor. Posttranslational modifications (PTMs) heavily impact the plasticity of the proteome. Glycosylation is the most complex and most abundant PTM, but challenging to probe due to the non-templated nature of glycan biosynthesis.

Chemists and Biochemists at the Imperial College London (London, UK) have developed a new method to study the proteins released by cells, which could lead to the development of new tools to track diseases including cancer. Their method identifies proteins released by a specific type of cell, even if the cells are in a complex environment with many different cell types. The method is called Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG).

The method uses bioorthogonal chemistry or click chemistry. The chemical tag is selected so that it "clicks" with another molecule that helps the scientists isolate the desired proteins or add a fluorescent tag to them. The investigators showed that BOCTAG worked in cell cultures with multiple cell lines and in mice, where they successfully tagged proteins from specific cancer cells. This method could also be used in fields such as immunology, infectious diseases, and to better understand disease biology, particularly how tumor cells change as a result of complex interactions in the body.

Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. The team employed BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) equipped with a ACQUITY UPLC BEH Glycan (Waters Corporation, Milford, MA, USA). They demonstrated application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function. The study was published on October 25 2022 in the journal Nature Communications.

Related Links:
Imperial College London
Waters Corporation

Gold Supplier
STI Real-Time PCR Test
Neisseria Gonorrhoeae/Chlamydia Trachomatis/U.urealyticum Real-Time PCR Kit
3-in-1 Mixer
Automatic Blood Coagulation Analyzer
Pipetting Workstation
Microlab NIMBUS

Print article


Molecular Diagnostics

view channel
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)

Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. These autoantibodies can... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Use of DBS samples can break barriers in hepatitis C diagnosis and treatment for populations at risk (Photo courtesy of Pexels)

DBS-Based Assay Effective in Hepatitis C Diagnosis and Treatment for At Risk Populations

In a bid to eliminate viral hepatitis as a public health threat by 2030, the World Health Organization (WHO) has put forth a proposed strategy. To this end, researchers at the Germans Trias i Pujol Research... Read more


view channel
Image: New research has opened a path for fast and accurate cancer diagnosis (Photo courtesy of Imagene)

AI-Based Image Analysis Software Profiles Cancer Biomarkers in Real Time

Lung cancer is the most widespread type of cancer worldwide, resulting in approximately 1.76 million fatalities annually. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer diagnoses... Read more


view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more


view channel
Image: The global antimicrobial resistance diagnostics market size is expected to reach USD 5.7 billion by 2028 (Photo courtesy of Pexels)

Global Antimicrobial Resistance Diagnostics Market Driven by Increasing Hospital-Acquired Infections

Antimicrobial drugs are intended to counteract the harmful effects of microbes and promote a healthy life. However, their excessive use can result in the development of resistance, commonly referred to... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.