We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

WATERS CORPORATION

Waters Corp. designs, manufactures, sells and services ultra performance liquid chromatography (UPLC), high performan... read more Featured Products: More products

Download Mobile App




Cell-Specific Bioorthogonal Tagging of Glycoproteins Developed

By LabMedica International staff writers
Posted on 31 Oct 2022

Altered glycoprotein expression is an undisputed corollary of cancer development. More...

Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumor and host cannot be adequately recapitulated in monoculture of tumor-derived cell lines.

Cancer is a multifactorial disease consisting of an interplay between host and tumor. Posttranslational modifications (PTMs) heavily impact the plasticity of the proteome. Glycosylation is the most complex and most abundant PTM, but challenging to probe due to the non-templated nature of glycan biosynthesis.

Chemists and Biochemists at the Imperial College London (London, UK) have developed a new method to study the proteins released by cells, which could lead to the development of new tools to track diseases including cancer. Their method identifies proteins released by a specific type of cell, even if the cells are in a complex environment with many different cell types. The method is called Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG).

The method uses bioorthogonal chemistry or click chemistry. The chemical tag is selected so that it "clicks" with another molecule that helps the scientists isolate the desired proteins or add a fluorescent tag to them. The investigators showed that BOCTAG worked in cell cultures with multiple cell lines and in mice, where they successfully tagged proteins from specific cancer cells. This method could also be used in fields such as immunology, infectious diseases, and to better understand disease biology, particularly how tumor cells change as a result of complex interactions in the body.

Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. The team employed BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) equipped with a ACQUITY UPLC BEH Glycan (Waters Corporation, Milford, MA, USA). They demonstrated application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function. The study was published on October 25 2022 in the journal Nature Communications.

Related Links:
Imperial College London
Waters Corporation


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.