We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gold Nanoparticle-Based Electrode Marks Breakthrough in Urinalysis Disease Detection Methodology

By LabMedica International staff writers
Posted on 25 Feb 2022
Print article
Image: Electroanalytical technique uses gold-containing ternary nanocomposites (Photo courtesy of Unsplash)
Image: Electroanalytical technique uses gold-containing ternary nanocomposites (Photo courtesy of Unsplash)

Using gold-containing ternary nanocomposites, researchers have developed a novel electroanalytical technique with key diagnostic implications.

The novel electroanalytical technique developed by researchers at Xi'an Jiaotong University (Xi'an, China) permits the co-detection of dopamine (DA) and uric acid (UA) in urine samples even in the presence of ascorbic acid (AA). Urinalysis, or the detection and estimation of various pathophysiological substances in urine samples, is routinely recommended for disease diagnosis. Increased levels of UA, for instance, may indicate underlying kidney or heart disease. Similarly, an increase in the urinary levels of dopamine DA may indicate the presence of neurological disorders like neuroblastoma or Parkinson's disease. Because pathology labs need to simultaneously determine the urinary levels of multiple substances, techniques that permit such co-detection are necessary. However, such co-analyses sometimes present with technical hurdles. In the case of urine samples, the relatively higher concentrations of AA in urine interferes with the simultaneous detection of DA and UA, both of which are present at relatively lower levels.

To resolve this challenge, the researchers combined a nanocomposite mixture, which had an average grain size of 10-9 meters or more, made up of gold nanoparticles (AuNPs), a special (conducting) polymer, and electrochemically-treated graphene oxide over a conventional glassy carbon electrode (GCE), to get a superior electrode. A GCE combines the properties of glass with those of graphite. However, it needed to be modified for the selective and simultaneous detection of DA and UA in the presence of high concentrations of AA. The researchers employed a combination of chemical and electrochemical methods. They started with poly(3,4-ethylenedioxythiophene), or PEDOT, which is a highly conductive polymer with much promise in the field of biosensors.

The PEDOT-AuNPs were chemically synthesized from chloroauric acid and 3,4-ethylenedioxythiophene at room temperature. The addition of graphene oxide (GO) resulted in the formation of a homogeneous suspension of PEDOT-AuNPs-GO. This suspension was then dropped onto the surface of a GCE and dried. Finally, following an electrochemical procedure, the nanomaterial OPEDOT-AuNPs-ERGO/GCE was successfully fabricated and readied for bioanalytical measurements. When used, the modified electrode could simultaneously detect extremely tiny amounts of DA (1 mM) and UA (5 mM) under physiological conditions, even in the presence of a large excess (1.0 mM) of AA. The research team foresees a bright future for this novel nanomaterial-based application, especially in clinical and diagnostic setups. Future studies are certainly required, but this novel nanocomposite electrode has strong potential to become the gold standard for diagnostics in pathology laboratories.

"PEDOT can be overoxidized to obtain OPEDOT, whose hydrophilicity and unique properties make it useful in electroanalytical applications," said Associate Professor Dongdong Zhang of Xi'an Jiaotong University who led the research team. "However, since OPEDOT is not as good an electrical conductor or catalyst, it is modified with suitable nanomaterials, in this case, gold nanoparticles."

"Our novel, graphene-based, ternary composite, with its advantageous features, is a promising candidate for electroanalytical and clinical applications," added Dr. Zhang.

Related Links:
Xi'an Jiaotong University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.