Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Insulin Resistance and T2D Associated With Gut Microbial Diversity

By LabMedica International staff writers
Posted on 13 Aug 2021
Type 2 diabetes (T2D) is a common complex metabolic disorder. More...
Currently, more than 380 million people live with type 2 diabetes globally, and this number is expected to increase to more than 550 million by 2030.

Differences in gut microbiome composition with T2D status may comprise pathways on how dietary and other environmental factors affect development of insulin resistance and T2D. Patients with T2D have a lower overall α diversity of gut microbiome composition than healthy people.

A multidisciplinary international team of scientists led by those at the Erasmus University Medical Center (Rotterdam, the Netherlands) examined associations of gut microbiome composition with insulin resistance and T2D in a large population-based setting controlling for various sociodemographic and lifestyle factors. The team carried out a cross-sectional analysis included 2,166 participants from two Dutch population-based prospective cohorts.
The investigators used an automated stool DNA isolation kit (Diasorin, Saluggia, Italy) to isolate bacterial DNA. The V3 and V4 hypervariable regions of the bacterial 16S ribosomal RNA gene were amplified and sequenced on the MiSeq platform (Illumina, San Diego, CA, USA). Serum insulin was measured by electrochemiluminescence immunoassay technology. In one study, glucose levels were measured by hydrogen 1 nuclear magnetic resonance, and serum insulin was measured on an architect system (Abbott Laboratories, Lake Forest, IL, USA). Associations among α diversity, β diversity, and taxa with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and with type 2 diabetes were examined.

The investigators reported that lower microbiome Shannon index and richness were associated with higher HOMA-IR (e.g., Shannon index, −0.06; 95% CI, −0.10 to −0.02), and patients with type 2 diabetes had a lower richness than participants without diabetes (odds ratio [OR], 0.93; 95% CI, 0.88-0.99). The β diversity)was associated with insulin resistance. A total of 12 groups of bacteria were associated with HOMA-IR or type 2 diabetes. There were five taxa whose higher abundance was tied to lower prevalence of T2D:Clostridiaceae 1, Peptostreptococcaceae, Clostridium sensu stricto 1, Intestinibacter, and Romboutsia. There were seven taxa whose greater abundance was associated with lower HOMA-IR including Christensenellaceae and Marvinbryantia.

The authors concluded that higher microbiome α diversity, along with more butyrate-producing gut bacteria, was associated with less T2D and with lower insulin resistance among individuals without diabetes. These findings could help provide insight into the etiology, pathogenesis, and treatment of T2D. The study was published on July 29, 2021 in the journal JAMA Network Open.

Related Links:

Erasmus University Medical Center
Diasorin
Illumina
Abbott Laboratories


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.