We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Tryptophan Metabolism Is Dysregulated in Individuals with Fanconi Anemia

By LabMedica International staff writers
Posted on 20 Jan 2021
Print article
Image: Tryptophan metabolism is dysregulated in individuals with Fanconi anemia (Photo courtesy of Cincinnati Children’s Hospital Medical Center).
Image: Tryptophan metabolism is dysregulated in individuals with Fanconi anemia (Photo courtesy of Cincinnati Children’s Hospital Medical Center).
Fanconi anemia (FA) is a complex genetic disorder frequently associated with progressive marrow failure and a strong predisposition to early malignancies, particularly squamous cell carcinomas and hepatocellular carcinomas.

Tryptophan is an essential amino acid necessary for protein synthesis. Tryptophan metabolism has been closely linked to alterations in the microbiome, and dysregulation of the tryptophan pathway has significant implications for host immune regulation, gut inflammation, and overall health.

Hematologists at the Cincinnati Children’s Hospital Medical Center (Cincinnati, OH, USA) and their associates collected blood and stool samples from 23 patients with FA (52% females and age range 5-27 years) and 29 patients with other diagnoses (31% females and age range 1-18). The team studied tryptophan metabolism in FA by examining tryptophan and its metabolites before and during the stress of hematopoietic stem cell transplant (HSCT). Tryptophan can be converted to serotonin and kynurenine.

Plasma levels of tryptophan and metabolites were measured by using an enzyme-linked immunosorbent assay (ELISA): tryptophan (Abnova, Taipei, Taiwan); serotonin and melatonin (Enzo, Farmingdale, NY, USA); kynurenine (BlueGene Biotech, Shanghai, China); transforming growth factor β1 (TGF-β1, R&D Systems, Minneapolis, MN, USA).

Total RNA was isolated from peripheral blood mononuclear cells (PBMCs) and the expression of indoleamine 2,3-dioxygenase, tryptophan hydroxylase 1, and serotonin transporter were measured by RT-qPCR on an Applied Biosystems 7300 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). The team also performed immunochemistry using a Olympus BX53 microscope (Olympus America, Waltham, MA, USA). Nuclear magnetic resonance was also carried out on the plasma samples.

The scientists reported that that serotonin levels are markedly elevated 14 days after HSCT in individuals with FA, in contrast to individuals without FA. Kynurenine levels are significantly reduced in individuals with FA compared with individuals without FA, before and after HSCT. Most peripheral serotonin is made in the bowel. However, serotonin levels in stool decreased in individuals with FA after transplant, similar to individuals without FA. Instead, the team detected serotonin production in the skin in individuals with FA, whereas none was seen in individuals without FA.

Serotonin and TGF-β levels were closely correlated with platelet count before and after HSCT in persons without FA. In FA, neither baseline serotonin nor TGF-β correlated with baseline platelet count (host-derived platelets), only TGF-β correlated 14 days after transplant (blood bank-derived platelets).

The authors concluded that their findings suggest that serotonin inhibition as a new avenue to diminish a multitude of clinical risks and disease phenotypes in FA, which will now require detailed characterization of local and systemic serotonin metabolism. The study was published on January 7, 2021 in the journal Blood Advances.

Related Links:
Cincinnati Children’s Hospital Medical Center
Abnova
BlueGene Biotech
Thermo Fisher Scientific
Olympus America
Enzo
R&D Systems


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.