We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Soluble Transferrin Receptor Investigated in Iron Deficiency Anemia

By LabMedica International staff writers
Posted on 25 May 2020
Print article
Image: The UniCel DxI 800 Access Immunoassay System (Photo courtesy of Beckman Coulter).
Image: The UniCel DxI 800 Access Immunoassay System (Photo courtesy of Beckman Coulter).
Anemia is a global public health problem and approximately 30% of the world's population suffered from anemia, with children and pregnant women being the most affected. Microcytic hypochromic anemia is a common type of anemia, and iron deficiency anemia (IDA) is the most common manifestation of this anemia.

The current gold standard for an IDA diagnosis is iron staining of a bone marrow smear. Transferrin receptor (TfR) is a transmembrane glycoprotein. Iron is transported by binding to specific TfR‐transferrin complex and thereby released into cells. Through proteolysis, TfR produces soluble transferrin receptor (sTfR) in the serum, whose concentration is proportional to the TfR concentration.

Laboratory medical scientists at the Peking Union Medical College Hospital (Beijing, China) enrolled 436 subjects from March 2014 to August 2015. Among these, 118 were patients with IDA, 161 were patients with anemia of chronic disease (ACD), 60 were patients with chronic diseases with iron deficiency anemia (CIDA), and 97 were apparently healthy subjects (HS).

The scientists used the DXI 800 automatic immunoassay analyzer (Beckman Coulter, Brea, CA, USA), the Cobas c702 automatic biochemistry analyzer (Roche Diagnostics, Risch-Rotkreuz, Switzerland), and the Siemens BNII special protein analyzer (Siemens Healthineers, Erlangen, Germany) with their corresponding sTfR reagents and calibrators. The sTfR concentrations in two groups of patient specimens with high‐level and low‐level sTfR concentrations and in quality control materials were measured four times a day for five consecutive days to evaluate the precision of the three methods.

The investigators reported that for the diagnosis of IDA, the cutoff points of sTfR measured by the chemiluminescent, immunoturbidimetric, and immunonephelometric assays were 2.91, 6.70, and 2.48 mg/L, respectively. The corresponding sensitivities were 85.59%, 85.59%, and 85.59%, the specificities were 91.47%, 90.31%, and 90.70%, and area under the curve was 0.943, 0.944, and 0.936, respectively. The sTfR concentrations measured by the different methods were significantly higher in the IDA and CIDA groups than in the other two groups.

The authors concluded that the different sTfR measurement methods showed similar diagnostic value in diagnosing iron deficiency and identifying whether ACD was combined with iron deficiency. However, there were large differences in the measurement results obtained with the different methods, and their cutoff points also varied. Therefore, when sTfR is used in the course of clinical diagnosis and treatment and to establish relevant diagnostic criteria and guidelines, clinicians should pay attention to the differences in the results between different measurement methods. The study was first published on April 22, 2020 in the Journal of Clinical Laboratory Analysis.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.