We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Methionine Levels Tied to Diabetes in Children

By LabMedica International staff writers
Posted on 26 Sep 2019
Metabolic dysregulation may precede the onset of type 1 diabetes. More...
However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. A new discovery involving levels of specific molecules could help create a very early type 1 diabetes test for the future.

A recent study found that babies who later developed type 1 diabetes showed altered levels of certain metabolites in the blood. At the moment the current early testing method relies on measuring two autoantibodies. However, these autoantibodies are rarely found in children younger than six months old.

A team of scientists led by the University of Turku and Åbo Akademi University (Turku, Finland) analyzed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to type 1 diabetes; those who seroconverted to one islet autoantibody, but not to type 1 diabetes; and an antibody-negative control group. Metabolites were measured using two-dimensional Gas Chromatography (GC) high-speed time of flight mass spectrometry (TOF-MS). Derivatized compounds were analyzed using a Pegasus 4D system (LECO, St Joseph, MI, USA).

The team reported that in early infancy, progression to type 1 diabetes was associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, compared with the control group. Methionine remained persistently upregulated in those progressing to type 1 diabetes compared with the control group and those who seroconverted to one islet autoantibody. The appearance of islet autoantibodies was associated with decreased glutamic and aspartic acids. The scientists were able to find differing levels of metabolites in the babies at just three months old, allowing for earlier testing of young infants than is currently possible with autoantibody tests.

The authors concluded that their findings suggest that children who progress to type 1 diabetes have a unique metabolic profile, which is, however, altered with the appearance of islet autoantibodies. Their findings may assist with early prediction of the disease. The study was published on August 23, 2019, in the journal Diabetologia.

Related Links:
University of Turku and Åbo Akademi University
LECO


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.