We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Parallel Assays Developed for CSF Alzheimer's Disease Proteins

By LabMedica International staff writers
Posted on 29 Apr 2019
Print article
Image: Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system (Photo courtesy of Thermo Fisher Scientific).
Image: Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system (Photo courtesy of Thermo Fisher Scientific).
Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders.

The protein concentration in CSF may change as a result of neuronal damage, altered neuronal functions or CSF flow rate. It therefore represents an exquisite source of information about the status of the central nervous system in physiological and pathological conditions.

Scientists from the KTH Royal Institute of Technology (Stockholm, Sweden) selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. They examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA.

Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Mass spectrometry analysis was performed on a Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC Nano system for reversed phase chromatography. Samples were automatically injected onto a C18 trap column followed by a C18 EASY-Spray analytical column.

Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, the team demonstrated the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.

The authors concluded that their study demonstrated that the application of an orthogonal method such as PRM for the verification of antibody-based experiments is a convenient approach to confirm the most robust protein profiles discovered. The comparison of data obtained by two different platforms is a very powerful approach, but the information gained should be interpreted in the light of the fact that the two methods, based on different analytical principles, present peculiar limits in protein detection and should be regarded as complementary. The study was published online on March 9, 2019, in the journal Clinica Chimica Acta.

Related Links:
KTH Royal Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.