We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Metabolic Fingerprinting Diagnoses Fibromyalgia

By LabMedica International staff writers
Posted on 02 Apr 2019
Print article
Image: A graduate student uses the novel diagnostic tool, which measures metabolic activity in the blood, distinguishing fibromyalgia from other chronic pain conditions with near 100% accuracy (Photo courtesy of Ohio State University).
Image: A graduate student uses the novel diagnostic tool, which measures metabolic activity in the blood, distinguishing fibromyalgia from other chronic pain conditions with near 100% accuracy (Photo courtesy of Ohio State University).
Fibromyalgia is the most common cause of chronic widespread pain in the USA, and disproportionately affects women. It is estimated that about 2% of the population, around four million adults, has fibromyalgia; however some organizations estimate even higher numbers.

About three in four people with fibromyalgia (FM) have not received an accurate diagnosis, and those who do know they have the disease waited an average of five years between symptom onset and diagnosis. Common symptoms include pain and stiffness all over the body, fatigue, depression, anxiety, sleep problems, headaches and problems with thinking, memory and concentration.

Medical scientists at the Ohio State University (Columbus, OH, USA) and their colleagues developed a rapid biomarker-based method for diagnosing FM by using vibrational spectroscopy to differentiate patients with FM from those with rheumatoid arthritis (RA), osteoarthritis (OA), or systemic lupus erythematosus (SLE) and to identify metabolites associated with these differences.

Blood samples were collected from 50 patients with a diagnosis of FM, 29 with RA, 19 with OA, and 23 with SLE. Bloodspot samples were prepared, and spectra collected with portable Fourier-transform infrared spectroscopy (FT-IR) and FT-Raman microspectroscopy and subjected to metabolomics analysis by ultra-high performance liquid chromatography (uHPLC), coupled to a photodiode array (PDA) and tandem mass spectrometry (MS/MS).

The team reported that unique IR and Raman spectral signatures were identified by pattern recognition analysis and clustered all study participants into classes (FM, RA, and SLE) with no misclassifications. Furthermore, the spectra correlated (r = 0.95 and 0.83 for IR and Raman, respectively) with FM pain severity measured with fibromyalgia impact questionnaire revised version (FIQR) assessments. Protein backbones and pyridine-carboxylic acids dominated this discrimination and might serve as biomarkers for syndromes such as FM. uHPLC-PDA-MS/MS provided insights into metabolites significantly differing among the disease groups, not only in molecular m/z+ and m/z− values, but also in UV-visible chromatograms. In addition to identifying fibromyalgia, the team also found evidence that the metabolic fingerprinting technique has the potential to determine the severity of fibromyalgia in an individual patient.

The authors concluded that vibrational spectroscopy may provide a reliable diagnostic test for differentiating FM from other disorders and for establishing serologic biomarkers of FM-associated pain. Luis Rodriguez-Saona, PhD, a professor and senior author of the study, said, “These initial results are remarkable. If we can help speed diagnosis for these patients, their treatment will be better and they'll likely have better outlooks. There's nothing worse than being in a gray area where you don't know what disease you have. We can look back into some of these fingerprints and potentially identify some of the chemicals associated with the differences we are seeing.” The study was published on February 15, 2019, in the Journal of Biological Chemistry.

Related Links:
Ohio State University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Calprotectin Assay
Fecal Calprotectin ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.