We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Molecular Cause Found for Rare Autoimmune Disorders

By LabMedica International staff writers
Posted on 01 Jan 2019
It is estimated that more than 20 million Americans suffer from autoimmune disorders. More...
They include rheumatoid arthritis, psoriasis, inflammatory bowel disease, multiple sclerosis, lupus, type 1 diabetes, and dozens of others.

There are very few safe and effective treatments for such disorders, largely because so little is understood about how they arise and are sustained. In several autoimmune disorders, including Singleton-Merten syndrome (SMS), Aicardi-Goutières syndrome, familial chilblain lupus, proteasome associated autoinflammatory syndromes and many others involve improper stimulation of interferon.

Scientists at the Scripps Research Institute (Jupiter, FL, USA) have found a molecular cause of a group of rare autoimmune disorders in which the immune system attacks the body's own healthy cells. Interferon is a key component of the frontline defense against pathogens. Interferon earned its name because it literally interferes with virus' ability to make copies of themselves. The immune system relies on a gene called retinoic acid inducible gene-I, (RIG-I) to signal for the release of interferon whenever certain viral markers are encountered. RIG-I has to determine if the markers are of foreign origin or are from its own body.

Peptides were identified using tandem mass spectrometry (MS/MS) with the Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer. The team used hydrogen-deuterium exchange mass spectrometry (HDX-MS), which enables scientists to analyze the structures and dynamics of just such proteins. For the study, they applied HDX-MS to normal and mutant RIG-I, and essentially solved the mystery of how these mutations cause a failure of discrimination between self and viral RNA.

Most viruses have genes made of ribonucleic acid, or RNA, a close chemical cousin of DNA. RIG-I works as an early-warning detector of viral RNA, capable of triggering a broad antiviral immune response, including interferon release. The scientists showed that mutations in RIG-I cause the sensor protein to activate even when it encounters non-viral, "self" RNA. Jie Zheng, PhD, a postdoctoral associate and the first and co-corresponding author of the study, said, “This dysregulated molecular mechanism of RIG-I mediated RNA proofreading that we identified may help us understand and treat SMS and other autoimmune disorders.” The study was published on December 18, 2018, in the journal Nature Communications.

Related Links:
Scripps Research Institute


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.