We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Portable Breath Device Could Help Diagnose Diabetes

By LabMedica International staff writers
Posted on 25 Nov 2016
Print article
Image: A portable and compact breathalyzer device for measuring acetone in breath samples to diagnose diabetes (Photo courtesy of University of Oxford).
Image: A portable and compact breathalyzer device for measuring acetone in breath samples to diagnose diabetes (Photo courtesy of University of Oxford).
A new, portable breath analyzer has been developed that could someday help medical practitioners diagnose diabetes noninvasively without painful pinpricks, needles or other unpleasant methods.

Many studies examining the hallmarks of diabetes in exhaled breath have shown that elevated levels of acetone are strongly linked to diabetes. Detecting the concentrations of any given substance in breath in a simple way, however, is a major challenge as breath contains a complex mix of compounds, including water, carbon dioxide and methane that can throw results off.

Biochemists at the University of Oxford (UK) working with the Oxford Medical Diagnostics, Ltd (Begbroke, UK) developed a portable and compact device for measuring acetone in breath samples. The device features a 7 cm long high finesse optical cavity as an optical sensor that is coupled to a miniature adsorption preconcentrator containing 0.5 g of polymer material. Acetone is trapped out of breath and released into the optical cavity where it is probed by a near-infrared diode laser operating at ∼1670 nm.

The scientists report that with an optical cavity mirror reflectivity of 99.994%, a limit of detection of 159 parts per billion by volume (ppbv) was demonstrated on samples from breath bags. Initial results on direct breath sampling are presented with a precision of 100 ppbv. The method is validated with measurements made using an ion–molecule reaction mass spectrometer. Data was presented on elevated breath acetone from two individuals following an overnight fast and exercise, and from a third individual during several days of routine behavior.

The measurements were a close match to those of the mass spectrometer and covered a wide range of concentrations, including those that would suggest a patient has undiagnosed type-1 diabetes, or have problems controlling their blood glucose. Adding to the practicality of the device, the scientists say it could be re-used many times. The study was published online on October 18, 2016, in the journal Analytical Chemistry.

Related Links:
University of Oxford
Oxford Medical Diagnostics
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Molecular Diagnostics

view channel
Image: The new blood test identifies key biomarkers of osteoarthritis (Photo courtesy of Shutterstock)

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Osteoarthritis (OA) is the most prevalent form of arthritis, impacting millions worldwide and resulting in significant economic and social costs. Although no cure exists currently, the effectiveness of... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.