We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Hyaluronic Acid Turbidimetric Assay Compared to Standard Method

By LabMedica International staff writers
Posted on 13 Jan 2016
Print article
Image: The Hitachi 917 Automatic Disk-Chemistry Analyzer (Photo courtesy of Roche Diagnostics).
Image: The Hitachi 917 Automatic Disk-Chemistry Analyzer (Photo courtesy of Roche Diagnostics).
Circulating hyaluronic acid (HA) in human adults is primarily produced in the peripheral soft connective tissue and transported to the systemic circulation via lymph drainage and the majority of HA is removed from circulation by hepatic elimination.

HA is essentially non-immunogenic, which has excluded direct immunochemical methods of measurement. To accommodate this, several advanced methods of measurements have been used including enzymatic degradation; hyaluronic-binding protein (HABP) linked enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography.

Scientists at the Nordsjaellands Hospital, University of Copenhagen, (Denmark) and their colleagues measured HA concentrations in 39 samples of serum from 39 randomly selected intensive care unit (ICU) patients. The HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme-linked immunosorbent assay (ELISA) in a 40-sample dilution series and the 39 ICU patients.

The HA was measured with the PETIA (Corgenix; Broomfield, CO, USA) in ICU samples on the Hitachi 917 (Roche Diagnostics, GmbH; Mannheim, Germany) and in the dilution series on Modular P (Roche Diagnostics GmbH) analyzers (test assay), and by Corgenix HA ELISA using double determination (reference method).

The scientists found that in the ICU patients, the median HA concentration was 159.0 ng/mL (interquartile range (IQR) 117.5–362.5 ng/mL) with ELISA and 157.5 ng/ml (IQR 92.5–359.6 ng/mL) with PETIA. The mean difference was 12.88 ng/mL which was statistically significant and the 95% limits of agreement were −91.17 to 116.9 ng/mL. In the dilution series, the mean difference was −59.26 ng/mL (95% CI, −74.68 to 43.84 ng/mL, and the 95% limits of agreement were 35.23 to −153.8 ng/mL.

The authors concluded that there was random variation between the PETIA and ELISA test that could affect performance in a clinical context. The new clinical biochemistry assay for HA determination will allow for large studies of the clinical utility of HA. The study was published online on December 14, 2015, in the Journal of Clinical Laboratory Analysis.

Related Links:

Nordsjaellands Hospital 
Corgenix 
Roche Diagnostics GmbH 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.