We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




NonInvasive Device Monitors People with Diabetes

By LabMedica International staff writers
Posted on 05 Aug 2015
A new laser sensor that monitors blood glucose levels without penetrating the skin could transform the lives of millions of people living with diabetes. More...


Currently, many people with diabetes need to measure their blood glucose levels by pricking their fingers, squeezing drops of blood onto test strips, and processing the results with portable glucometers, but the process can be uncomfortable, messy and often has to be repeated several times every day.

The new technology developed by team at the University of Leeds (UK) uses a small device with low-powered lasers to measure blood glucose levels without penetrating the skin and could give people a simpler, pain-free alternative to finger pricking. The technology has continuous monitoring capabilities making it ideal for development as a wearable device. This could help improve the lives of millions of people by enabling them to constantly monitor their glucose levels without the need for an implant.

At the heart of the new technology is a piece of nano-engineered silica glass with ions that fluoresce in infrared light when a low power laser light hits them. When the glass is in contact with the users' skin, the extent of fluorescence signal varies in relation to the concentration of glucose in their blood. The device measures the length of time the fluorescence lasts for and uses that to calculate the glucose level in a person's bloodstream without the need for a needle. This process takes less than 30 seconds.

The technology is licensed to Glucosense Diagnostics Ltd, (London, UK), a spin-out company jointly formed and funded by the University of Leeds and NetScientific plc (London, UK), a biomedical and healthcare technology group specializing in commercializing transformative technologies from leading universities and research institutes.

Peter J. Grant, MBChB, MD, FRCP, FESC, a professor of medicine and consultant diabetes specialist, said, “Non-invasive monitoring will be particularly valuable in young people with Type 1 diabetes. Within this group, those who are attempting very tight control such as young women going through pregnancy or people who are experiencing recurrent hypoglycemia could find this technology very useful.”

Related Links:

University of Leeds
Glucosense Diagnostics Ltd. 
NetScientific plc 



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.