We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Salivary Glucose Levels Measured by Biochip Sensor

By LabMedica International staff writers
Posted on 18 Jun 2014
A new biochip sensor has been developed that can selectively measure concentrations of glucose in a complex solution similar to human saliva.

The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry which is a means of detecting chemical signature of compounds using light. More...
The device is sensitive enough to detect differences in glucose concentrations that amount to just a few thousand molecules in the sampled volume.

Scientists at Brown University (Providence, RI, USA) exploited the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay that yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The biochip is made from a 2.54 x 2.54-cm piece of quartz coated with a thin layer of silver. Etched in the silver are thousands of nanoscale interferometers, tiny slits with a groove on each side. The grooves measure 200 nm wide and the slit is 100 nm wide.

When a liquid is deposited on the chip, the light and the surface plasmon waves propagate through that liquid before they interfere with each other. That alters the interference patterns picked up by the detectors, depending on the chemical makeup of the liquid. The scientists added microfluidic channels to the chip to introduce two enzymes that react with glucose in a very specific way. The first enzyme, glucose oxidase, reacts with glucose to form a molecule of hydrogen peroxide. This molecule then reacts with the second enzyme, horseradish peroxidase, to generate a molecule called resorufin, which can absorb and emit red light, thus coloring the solution. The team could then tune the interferometers to look for the red resorufin molecules.

The team tested its combination of dye chemistry and plasmonic interferometry by looking for glucose in artificial saliva, a mixture of water, salts and enzymes that resembles the real human saliva. They found that they could detect resorufin in real time with great accuracy and specificity. They were able to detect changes in glucose concentration of 0.1 μM/L, which is 10 times the sensitivity that can be achieved by interferometers alone. The proposed device is highly sensitive and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva, which is 20 μM–240 μM.

Domenico Pacifici, PhD, an assistant professor of engineering, and who led the study, said, “We have demonstrated the sensitivity needed to measure glucose concentrations typical in saliva, which are typically 100 times lower than in blood. Now we are able to do this with extremely high specificity, which means that we can differentiate glucose from the background components of saliva.” The study was published in the June 2014 edition of the journal Nanophotonics.

Related Links:

Brown University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
PlGF Test
Quidel Triage PlGF Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.