We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Redesigned Microchip Device is Effectual in Tumor Cell Capture

By LabMedica International staff writers
Posted on 04 Nov 2010
A second-generation microchip-based implement captures circulating tumor cells (CTC) more effectively than previous models. More...


The microchip is mounted on a standard glass slide, which allows the use of standard pathology tests to identify cancer cells, and the device can be easily opened, giving access to CTCs for additional testing and growth in culture.

The Herringbone (Hb) Chip was developed at the Massachusetts General Hospital, (Boston MA, USA) and uses a microvortex –generating principle. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to increase significantly the number of interactions between target CTCs and the antibody-coated chip surface. The new device also may provide more comprehensive and easily accessible data from captured tumor cells and is easier to manufacture. CTCs are living solid tumor cells found at extremely low levels in the bloodstream; the Hb-Chip can process large-volume blood samples, increasing the ability to find these rare cells.

Experiments comparing the HB-Chip to the original CTC-chip found the new device captured more than 90% of cancer cells introduced into a blood sample, which is a 25% improvement over the CTC-chip. Tests of samples from cancer patients found the redesigned device at least as effective as the original. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific translocation markers were readily identified using molecular techniques. The transparent materials used in the manufacture of the HB-Chip made it possible to complement immunofluorescence staining of CTCs with stains used in standard pathology laboratories to identify tumor cells using light microscopy. The HB-Chip also captured clusters of 4 to 12 CTCs from several patient samples but not from samples to which cancer cells had been added. No previous technology for capturing CTCs has ever found such clumps of tumor cells.

Daniel Haber, M.D., Ph.D., coauthor of the study said, "This new technology is a powerful platform that will enable increasingly sophisticated analyses of metastasis and support clinical research in targeted cancer therapies." The study was published in the October 2010 edition of the Proceedings of the National Academy of Sciences (PNAS).

Related Links:
Massachusetts General Hospital



New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated Biochemical Analyzer
iBC 900
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.