We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bacteria Engineered to Detect Tumor DNA Could Seek and Destroy Gastrointestinal and Other Cancers

By LabMedica International staff writers
Posted on 11 Aug 2023
Print article
Image: As seen in a dish, Acinetobacter baylyi (green) bacteria surround clumps of colorectal cancer cells (Photo courtesy of UC San Diego)
Image: As seen in a dish, Acinetobacter baylyi (green) bacteria surround clumps of colorectal cancer cells (Photo courtesy of UC San Diego)

Tumors release their DNA into their surrounding environment, a phenomenon known as shedding. While various technologies can analyze purified DNA in laboratory settings, they fall short in detecting DNA in its released state. Although bacteria have been engineered for diverse diagnostic and therapeutic tasks, they cannot recognize specific DNA sequences and mutations outside of cells. Now, researchers have engineered bacteria that can identify tumor DNA in a live organism. This innovation, which successfully detected cancer in the colons of mice, has the potential for the creation of new biosensors to identify infections, cancers, and other diseases.

Under the new “Cellular Assay for Targeted CRISPR-discriminated Horizontal gene transfer,” or “CATCH,” strategy, scientists from the University of California San Diego (La Jolla, CA, USA) used CRISPR technology to engineer bacteria capable of assessing free-floating DNA sequences on a genomic level. These samples were then compared with predetermined cancerous sequences. The concept involved repurposing bacteria that are naturally present in the colon as biosensors, capable of detecting DNA released from colorectal tumors. The focus was on Acinetobacter baylyi, a bacterium in which the essential components for both acquiring DNA and utilizing CRISPR for analysis were identified.

The researchers proceeded to design, construct, and assess Acinetobacter baylyi as a sensor for detecting DNA from the KRAS gene, which is frequently mutated in various cancers. They programmed the bacterium with a CRISPR system to differentiate between mutant and normal (non-mutated) variants of the KRAS gene. Consequently, only bacteria that had incorporated mutant KRAS forms, as present in precancerous growths and cancers, would survive to indicate or respond to the disease. This research builds upon the concept of horizontal gene transfer, a method by which genetic material is exchanged among organisms in a manner distinct from traditional genetic inheritance. While horizontal gene transfer is commonly observed between bacteria, the researchers successfully adapted this concept from mammalian tumors and human cells into bacteria.

The researchers are presently refining their bacteria-based biosensor strategy, exploring new circuits and various bacterial species for detecting and treating human cancers and infections. Researchers believe that in the future, cellular interventions will surpass traditional medicinal approaches. A living bacterium capable of detecting DNA within the gastrointestinal tract holds remarkable potential as a sentinel for identifying and combating gastrointestinal cancers, along with numerous other malignancies.

“There is so much potential to engineer bacteria to prevent colorectal cancer, a tumor that is immersed in a stream of bacteria, that could help, or hinder, its progression,” said researcher Susan Woods.

Related Links:
UC San Diego

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.