We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid, Direct-to-Digital Prostate Biopsy Pathology Evaluated

By LabMedica International staff writers
Posted on 13 May 2021
Print article
Image: Standard hematoxylin-eosin sections are unaffected by processing and imaging by clearing histology with multiphoton microscopy (CHiMP). Portions of the same core biopsy were submitted directly to standard processing (A) or processed by CHiMP and subsequently embedded in paraffin, sectioned, and stained (B), showing equivalent coloration and morphology (Photo courtesy of Yale School of Medicine)
Image: Standard hematoxylin-eosin sections are unaffected by processing and imaging by clearing histology with multiphoton microscopy (CHiMP). Portions of the same core biopsy were submitted directly to standard processing (A) or processed by CHiMP and subsequently embedded in paraffin, sectioned, and stained (B), showing equivalent coloration and morphology (Photo courtesy of Yale School of Medicine)
Increasing adoption of digital pathology promises marked improvements in reproducibility, efficiency, and accuracy of tissue-based diagnostics by facilitating routine remote expert consultation and enabling computerized image analysis for clinical use.

Clearing histology with multiphoton microscopy (CHiMP) is a new technique for tissue processing and image acquisition that eliminates conventional paraffin embedding by incorporating fluorescent staining during preparation steps and then uses a fast, high-resolution laser-scanning multiphoton microscope to acquire images on intact tissue.

Medical Laboratory Scientists at Yale School of Medicine (New Haven, CT, USA) analyzed samples from 40 patients with a high likelihood of prostate cancer based on magnetic resonance imaging consented to investigational core biopsy. A subset of samples was used for direct comparison of physical slide preparation effects and time-tracking determination with multiphoton microscopy. Twenty samples were processed for diagnostic comparison between multilevel digital slides and subsequently produced physical slides. A reference diagnosis based on all data was established using grade groups. Level of diagnostic match and requests for immunohistochemistry were compared between physical and digital diagnoses. Immunohistochemical staining and length measurements were secondary outcomes.

Imaging of pathologist study specimens was performed in a prototype specialized ultrafast multiphoton microscope supplied by the startup company Applikate Technologies (Weston, CT, USA) that incorporates a femtosecond pulsed laser and a 0.95 numerical aperture benzyl alcohol/benzyl benzoate immersion objective. All physical tissue slides were imaged using an Aperio ScanScope (Leica Biosystems, Wetzlar, Germany) at ×40 equivalent resolution for digital storage and preparation of figures.

The scientists reported that interpretations based on direct multiphoton imaging yielded diagnoses that were at least as accurate as standard histology; cancer diagnosis correlation was 89% (51 of 57) by physical slides and 95% (53 of 56) by multiphoton microscopy. Grade-level concordance was 73% (44 of 60) by either method. Immunohistochemistry for routine prostate cancer–associated markers on these alternatively processed tissues was unaffected. Alternatively processed tissues resulted in longer measured core and cancer lengths, suggestive of improved orientation and visualization.

The authors concluded that their study demonstrates the viability of using direct digital imaging for definitive microscopic evaluation of tissue without requiring physical slide preparation for gold standard–level diagnosis. Overall, results support practical relevance of the CHiMP technique for prostate biopsy evaluation, with the potential to significantly advance prostate cancer diagnostics, and meriting continuing detailed validation as a process incorporated into clinical diagnostic practice. The study was published in the May, 2021 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
Yale School of Medicine
Leica Biosystems


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.